Combinatorial statistics

Given a set of combinatorial objects A, a **combinatorial statistic** is an integer given to every element of the set.

In other words, it is a function $\mathcal{A} \to \mathbb{Z}_{\geq 0}$.

Example. Let S be the set of subsets of $\{1, 2, 3\}$. The cardinality of a set is a combinatorial statistic on S. $|\emptyset| = 0$ $|\{1\}| = 1$ $|\{2\}| = 1$ $|\{3\}| = 1$ $|\{1, 2\}| = 2$ $|\{1, 3\}| = 2$ $|\{2, 3\}| = 2$ $|\{1, 2, 3\}| = 3$

Combinatorial statistics provide a *refinement* of counting.

less information

more information

Statistics and Permutations

Questions involving combinatorial statistics:

- ► What is the *distribution* of the statistics?
- ► What is the *average size* of an object in the set?
- Which statistics have the same distribution?
 - Insight into their structure.
 - Provides non-trivial bijections in the set?

A especially rich playground involves *permutation statistics*.

Representations of permutations

One-line notation: $\pi = 416253$ Cycle notation: $\pi = (142)(36)(5)$

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. A descent is a position *i* such that $\pi_i > \pi_{i+1}$. Define des (π) to be the **number of descents** in π . Example. When $\pi = 416253$, des $(\pi) = 3$ since 4 > 1, 6 > 2, 5 > 3. Question: How many *n*-permutations have *d* descents? des(12) = 0 des(123) =_____ des(213) =_____ des(312) =_____ des(21) = 1 des(132) =_____ des(231) =_____ des(321) =_____

$n \setminus d$	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for des (π) ?

Note the symmetry. If π has d descents, its reverse $\hat{\pi}$ has _____ descents.

These are the **Eulerian numbers**.

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. An **inversion** is a pair i < j such that $\pi_i > \pi_j$. Define $\operatorname{inv}(\pi)$ as the **number of inversions** in π .

Example. When $\pi = 416253$, $inv(\pi) = 7$ since 4 > 1, 4 > 2, 4 > 3, 6 > 2, 6 > 5, 6 > 3, 5 > 3. In a string diagram $inv(\pi) =$ number of crossings. In a matrix diagram $inv(\pi)$, draw *Rothe diagram*:

inv(12) = 0	inv(123) =
inv(21) = 1	inv(132) =

n∖i	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $inv(\pi)$?

The inversion number is a good way to count how "far away" a permutation is from the identity.

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the **major index** of π , to be sum of the descents of π . [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi = 416253$, maj $(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

$$\begin{array}{ll} {\sf maj}(12) = 0 & {\sf maj}(123) = _ & {\sf maj}(213) = _ & {\sf maj}(312) = _ \\ {\sf maj}(21) = 1 & {\sf maj}(132) = _ & {\sf maj}(231) = _ & {\sf maj}(321) = _ \\ \end{array}$$

$n \setminus m$	0	1	2	3	4	5	6	What
1	1							maj (π)
2	1	1						The
3	1	2	2	1				IS
4	1	3	5	6	5	3	1	the

What are the possible values for $maj(\pi)$?

The distribution of maj (π) IS THE SAME AS the distribution of inv (π) !

A statistic that has the same distribution as inv is called Mahonian.

q-analogs

Definition: A q-analog of a number c is an expression f(q) such that $\lim_{q\to 1} f(q) = c$.

Example.
$$\frac{1-q^n}{1-q} = (1+q+q^2+\dots+q^{n-2}+q^{n-1}) \text{ is a}$$

q-analog of *n* because $\lim_{q\to 1} \frac{1-q^n}{1-q} = n$.
We write $[n]_q = \frac{1-q^n}{1-q}$.
q-analogs work hand in hand with combinatorial statistics.
If stat is a combinatorial statistic on a set *S* (stat : *S* $\mapsto \mathbb{N}$),
then $\sum_{s\in S} q^{\text{stat}(s)}$ is a *q*-analog of $|S|$ because

$$\lim_{q \to 1} \sum_{s \in S} q^{\operatorname{stat}(s)} = \sum_{s \in S} 1^{\operatorname{stat}(s)} = \sum_{s \in S} 1 = |S|$$

Inversion statistics

Question: What is the generating function $\sum_{\pi \in S_n} q^{inv(\pi)}$?

Conjecture: $\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = [n]_q \cdots [1]_q =: [n]_q!$, the *q*-factorial. Claim: This equation makes sense when q = 1.

Inversion Statistics

Theorem: $\sum_{\pi \in S_n} q^{inv(\pi)} = [n]_q!$ *Proof.* There exists a bijection $\left\{ \begin{array}{c} \text{permutations} \\ \pi \in S_n \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \text{lists} (a_1, \dots, a_n) \\ \text{where } 0 < a_i < n - i \end{array} \right\}.$ Given a permutation π , create its **inversion table**. Define a_i to be the number of entries *j* to the left of *i* that are smaller than *i*. Then $inv(\pi) = a_1 + a_2 + \cdots + a_n$. Example. The inversion table of $\pi = 43152$ is (3, 2, 0, 1, 0). $n - 1 \quad n - 2$ $\sum q^{\mathsf{inv}(\pi)} = \sum \sum \cdots \sum q^{a_1 + a_2 + \cdots + a_n}$ $\pi \in S_n$ $a_1 = 0 a_2 = 0 a_n = 0$ $= \left(\sum_{n=1}^{n-1} q^{a_1}\right) \left(\sum_{n=2}^{n-2} q^{a_2}\right) \cdots \left(\sum_{n=2}^{n} q^{a_n}\right)$

$$= [n]_q [n-1]_q \cdots [1]_q = [n]_q!$$

Notes

We said that inv and maj are equidistributed. Two possible proofs:

Find a bijection $f : S_n \to S_n$ such that $maj(\pi) = inv(f(\pi))$.

• Or prove
$$\sum_{\pi \in S_n} q^{\operatorname{inv}(\pi)} = \sum_{\pi \in S_n} q^{\operatorname{maj}(\pi)}$$
.

With a q-analog of factorials, we can define a q-analog of binomial coefficients. Define

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$$

These *polynomials* are called the *q*-binomial coefficients or Gaussian polynomials.

$$\blacktriangleright \lim_{q \to 1} {n \brack k}_q = {n \choose k}.$$

► They are indeed polynomials.

• Example.
$$\begin{bmatrix} 4 \\ 2 \end{bmatrix}_q = 1 + q + 2q^2 + q^3 + q^4$$

Combinatorial interpretations of *q*-binomial coefficients!

Combinatorial interpretations of *q*-binomial coefficients

Consider set $S_{k,n-k}$ of permutations of the multiset $\{1^k, 2^{n-k}\}$. Define $inv(\pi) = |\{i < j : \pi(i) > \pi(j)\}|$.

Example. $\pi = 1122121122$ is a permutation of $\{1^5, 2^5\}$. Then $inv(\pi) = 0 + 0 + 3 + 3 + 0 + 2 + 0 + 0 + 0 = 8$.

Then
$$\sum_{\pi \in S_{k,n-k}} q^{inv(\pi)} = {n \brack k}_q$$
. (Note $|S_{k,n-k}| = {n \choose k}$.)

This is a refinement of these permutations in terms of inversions.

Consider the set \mathcal{P} of lattice paths from (0,0) to (a,b). Let area(P) be the area above a path P. Then $\sum_{P \in \mathcal{P}} q^{\operatorname{area}(P)} = \begin{bmatrix} a+b\\a \end{bmatrix}_q$. (Note $|\mathcal{P}| = \begin{pmatrix} a+b\\a \end{pmatrix}$.)

This can also be used to give a q-analog of the Catalan numbers.

There's always more to learn!!!

References :

- Niklós Bóna. Combinatorics of Permutations, CRC, 2004.
- T. Kyle Petersen. Two-sided Eulerian numbers via balls in boxes. http://arxiv.org/abs/1209.6273
- The Combinatorial Statistic Finder. http://findstat.org/