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by terms bjx
j in B . This product contributes to the coefficient of

xk in AB only when .

Therefore, A(x)B(x) =
∑

k≥0

( k
∑

i=0

aibk−i

)

xk

An interpretation of this theorem:
If ak counts all “A” objects of “size” k , and
bk counts all “B” objects of “size” k , then
[xk ]

(

A(x)B(x)
)

counts all pairs of objects (A,B) with total size k .
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Multiplying Generating Functions 96

A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies,
where for each of 20 BIG candy bars, we can choose at most one, and
for each of 40 different small candies, we can choose as many as we like?

Big candy g.f.: B(x)

Small candy g.f.: S(x)

Total g.f.: B(x)S(x)



Multiplying Generating Functions 96

A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies,
where for each of 20 BIG candy bars, we can choose at most one, and
for each of 40 different small candies, we can choose as many as we like?

Big candy g.f.: B(x) = (1 + x)20 =

∞
∑

k=0

(

20

k

)

xk .

Small candy g.f.: S(x)

Total g.f.: B(x)S(x)



Multiplying Generating Functions 96

A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies,
where for each of 20 BIG candy bars, we can choose at most one, and
for each of 40 different small candies, we can choose as many as we like?

Big candy g.f.: B(x) = (1 + x)20 =

∞
∑

k=0

(

20

k

)

xk .

Small candy g.f.: S(x) =
1

(1− x)40
=

∞
∑

k=0

((

40

k

))

xk .

Total g.f.: B(x)S(x)



Multiplying Generating Functions 96

A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies,
where for each of 20 BIG candy bars, we can choose at most one, and
for each of 40 different small candies, we can choose as many as we like?

Big candy g.f.: B(x) = (1 + x)20 =

∞
∑

k=0

(

20

k

)

xk .

Small candy g.f.: S(x) =
1

(1− x)40
=

∞
∑

k=0

((

40

k

))

xk .

Total g.f.: B(x)S(x) =

∞
∑

k=0

[

k
∑

i=0

(

20

i

)((

40

k − i

))

]

xk



Multiplying Generating Functions 96

A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies,
where for each of 20 BIG candy bars, we can choose at most one, and
for each of 40 different small candies, we can choose as many as we like?

Big candy g.f.: B(x) = (1 + x)20 =

∞
∑

k=0

(

20

k

)

xk .

Small candy g.f.: S(x) =
1

(1− x)40
=

∞
∑

k=0

((

40

k

))

xk .

Total g.f.: B(x)S(x) =

∞
∑

k=0

[

k
∑

i=0

(

20

i

)((

40

k − i

))

]

xk

Conclusion: [x30]B(x)S(x) =
30
∑

i=0

(

20

i

)((

40

30− i

))



Multiplying Generating Functions 96

A Halloween Multiplication

Example. In how many ways can we fill a halloween bag w/30 candies,
where for each of 20 BIG candy bars, we can choose at most one, and
for each of 40 different small candies, we can choose as many as we like?

Big candy g.f.: B(x) = (1 + x)20 =

∞
∑

k=0

(

20

k

)

xk .
bk counts

(k big candies)

Small candy g.f.: S(x) =
1

(1− x)40
=

∞
∑

k=0

((

40

k

))

xk .
sk counts

(k small candies)

Total g.f.: B(x)S(x) =

∞
∑

k=0

[

k
∑

i=0

(

20

i

)((

40

k − i

))

]

xk

Conclusion: [x30]B(x)S(x) =
30
∑

i=0

(

20

i

)((

40

30− i

))



Multiplying Generating Functions 96

A Halloween Multiplication
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Conclusion: [x30]B(x)S(x) =
30
∑
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So, [xk ]B(x)S(x) counts pairs of the form ∨ w/k total candies.
(some number of big candies, some number of small candies)
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Vandermonde’s Identity (p. 117)

(

m + n

k

)

=

k
∑

j=0

(

m

j

)(

n

k − j

)

Combinatorial proof Generating function proof
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Example. What is the coefficient of x7 in x3(1+x)4

(1−2x) ?

Powers of generating functions

A special case of convolution gives the coefficients of powers of a g.f.:

(

A(x)
)2

=
∑

k≥0

( k
∑

i=0

aiak−i

)

xk =
∑

k≥0

(

∑

i1+i2=k

ai1ai2

)

xk .

Similarly,
(

A(x)
)n

=
∑

k≥0

(

∑

i1+i2+···+in=k

ai1ai2 · · · ain

)

xk .

[xk ](A(x))n counts sequences of objects (A1,A2, . . . ,An), all of type A,
with a total size over all objects of k .
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Example. The eight compositions of 4 are:
4 3+1 1+3 2+2 2+1+1 1+2+1 1+1+2 1+1+1+1

Question: How many compositions of n are there?

Answer: 2n−1, which we can prove by induction on n:

Base case. There is one composition of 1.
Step. Suppose that the number of compositions of k is 2k−1.
Create a function from Ck+1 → Ck that sends

c1 + · · ·+ cℓ 7→

{

c1 + · · ·+ cℓ−1 + (cℓ − 1) if cℓ > 1

c1 + · · ·+ cℓ−1 if cℓ = 1

This is a two-to-one function. (Every comp. in Ck has two preimages.)

Therefore, the number of comp’s of k + 1 is 2k+1−1 = 2k , as desired.
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Investigate F (x) = 1/(1 − x).

H(x) = F (G (x)) =
1

1− G (x)
= 1 + G (x) + G (x)2 + G (x)3 + · · · .

◮ This is an infinite sum of (likely infinite) power series.
◮ The constant term h0 of H(x) only makes sense if g0 = 0.
◮ This implies that xn divides G (x)n.

Hence, there are at most n− 1 summands which contain xn−1.
We conclude that the infinite sum makes sense.

For a general composition with g0 = 0,

F (G (x)) =
∑

n≥0

fnG (x)n = f0 + f1G (x) + f2G (x)2 + f3G (x)3 + · · · .
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Interpreting
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(G1,G2, . . . ,Gn), each of type G , and the coefficient [xk ]

(

G (x)n
)

counts those n-sequences that have total size equal to k .
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Recall: The generating function G (x)n counts sequences of objects
(G1,G2, . . . ,Gn), each of type G , and the coefficient [xk ]

(

G (x)n
)

counts those n-sequences that have total size equal to k .

Conclusion: As long as g0 = 0, then 1 + G (x)1 + G (x)2 + G (x)3 + · · ·

counts sequences of any length of objects of type G , and the
coefficient [xk ] 1

1−G(x) counts those that have total size equal to k .

Alternatively: Interpret [xk ] 1
1−G(x) thinking of k as this total size.

First, find all ways to break down k into integers i1 + · · ·+ iℓ = k .
Then create all sequences of objects of type G in which
object j has size ij .

Think: A composition of generating functions equals
a composition. of. generating. functions.
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An Example, Compositions

Example. How many compositions of k are there?

Solution. A composition of k corresponds to a sequence
(i1, . . . , iℓ) of positive integers (of any length) that sums to k .
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An Example, Compositions

Example. How many compositions of k are there?

Solution. A composition of k corresponds to a sequence
(i1, . . . , iℓ) of positive integers (of any length) that sums to k .

The objects in the sequence are positive integers; we need the g.f.
that counts how many positive integers with “size i”.

What does size correspond to?

How many have value i? Exactly one: the number i .

So the generating function for our objects is
G (x) = 0 + 1x1 + 1x2 + 1x3 + 1x4 + · · · = .

We conclude that the generating function for compositions is
H(x) = 1

1−G(x) =

So the number of compositions of n is
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A Composition Example

Example. How many ways are there to take a line of k soldiers,
divide the line into non-empty platoons, and from each platoon
choose one soldier in that platoon to be a leader?

Solution. A soldier assignment corresponds to a sequence of
platoons of size (i1, . . . , iℓ).

Given i soldiers in a platoon, in how many ways can we assign the
platoon a leader?

Therefore G (x) =

And the generating function for such a military breakdown is

H(x) =
1

1− G (x)
=

1− 2x + x2

1− 3x + x2
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