Example: Fruit baskets

Example. In how many ways we can create a fruit basket with n pieces of fruit, where we have an infinite supply of apples and bananas, with the added constraints:

- The number of apples is even.
- The number of bananas is a multiple of five.
- The number of oranges is at most four.
- The number of pears is zero or one.

Strategy. Write down a power series for each piece of fruit, multiply them together, and extract the coefficient of x^{k}.

Example: Rolling dice

Example. When two standard six-sided dice are rolled, what is the distribution of the sums that appear?
Solution. The generating function for one die is $D(x)=$
Therefore, the distribution of sums for rolling two dice is
What does $D(1)$ count?
Example. Is it possible to relabel two six-sided dice differently to give the exact same distribution of sums?
Solution. Find two generating functions $F(x)$ and $G(x)$ such that $F(x) G(x)=D^{2}(x)$ and $F(1)=G(1)=6$. Rearrange the factors:
$D(x)^{2}=x^{2}(1+x)^{2}\left(1-x+x^{2}\right)^{2}\left(1+x+x^{2}\right)^{2}$.
$=\left[x(1+x)\left(1+x+x^{2}\right)\right] \cdot\left[x\left(1-x+x^{2}\right)^{2}(1+x)\left(1+x+x^{2}\right)\right]$
$=\left[x+2 x^{2}+2 x^{3}+x^{4}\right] \cdot\left[x+x^{3}+x^{4}+x^{5}+x^{6}+x^{8}\right]$
Die $F:\{1,2,2,3,3,4\}$ and die $G:\{1,3,4,5,6,8\}$

Solving recurrence relations

Example. Determine a formula for the entries of the sequence $\left\{a_{k}\right\}_{k \geq 0}$ that satisfies $a_{0}=0$ and the recurrence $a_{k+1}=2 a_{k}+1$ for $k \geq 0$.

Solution. Use generating functions: define $A(x)=\sum_{k \geq 0} a_{k} x^{k}$.
Step 1: Multiply both sides of the recurrence by x^{k+1} and sum over all k :

$$
\sum_{k \geq 0} a_{k+1} x^{k+1}=\sum_{k \geq 0}\left(2 a_{k}+1\right) x^{k+1}
$$

Step 2: Massage the sums to find copies of $A(x)$.
LHS: Re-index, find missing term; RHS: separate into pieces.

$$
\sum_{k \geq 1} a_{k} x^{k}=\sum_{k \geq 0} 2 a_{k} x^{k+1}+\sum_{k \geq 0} x^{k+1}
$$

Conversion to functions of $A(x)$:

Solving recurrence relations

Step 3: Solve for the compact form of $A(x)$.

$$
A(x)=\frac{x}{(1-2 x)(1-x)}
$$

Step 4: Extract the coefficients.
When the degree of the numerator is smaller than the degree of the denominator, we can use partial fractions to determine an expression for $A(x)$ of the form:
$A(x)=\frac{C_{1}}{1-2 x}+\frac{C_{2}}{1-x}$
Solving gives $A(x)=\frac{1}{1-2 x}+\frac{-1}{1-x}$; each of which can be expanded:

$$
A(x)=\sum_{k \geq 0} 2^{k} x^{k}+\sum_{k \geq 0}(-1) x^{k}=\sum_{k \geq 0}\left(2^{k}-1\right) x^{k}
$$

Therefore, $a_{k}=2^{k}-1$.

A closed form for Fibonacci numbers

Example. Solve the recurrence relation $f_{k+2}=f_{k+1}+f_{k}$ with initial conditions $f_{0}=0$ and $f_{1}=1$.
Solution. Define $F(x)=\sum_{k \geq 0} f_{k} x^{k}$. Then,

$$
\begin{aligned}
\sum_{k \geq 0} f_{k+2} x^{k+2} & =\sum_{k \geq 0}\left(f_{k+1}+f_{k}\right) x^{k+2} \\
\sum_{k \geq 0} f_{k+2} x^{k+2} & =\sum_{k \geq 0} f_{k+1} x^{k+2}+\sum_{k \geq 0} f_{k} x^{k+2} \\
\sum_{k \geq 0} f_{k+2} x^{k+2} & =x \sum_{k \geq 0} f_{k+1} x^{k+1}+x^{2} \sum_{k \geq 0} f_{k} x^{k} \\
\sum_{k \geq 2} f_{k} x^{k} & =x \sum_{k \geq 1} f_{k} x^{k}+x^{2} \sum_{k \geq 0} f_{k} x^{k}
\end{aligned}
$$

Therefore, $F(x)-x-0=x(F(x)-0)+x^{2} F(x)$, so

$$
F(x)=\frac{x}{1-x-x^{2}}
$$

A closed form for Fibonacci numbers

So the Fibonacci numbers have generating function $x /\left(1-x-x^{2}\right)$.
The roots of $\left(1-x-x^{2}\right)=\left(1-r_{+} x\right)\left(1-r_{-} x\right)$ are $r_{ \pm}=(1 \pm \sqrt{5}) / 2$. Using partial fractions,

$$
F(x)=\frac{1}{\sqrt{5}} \frac{1}{1-r_{+} x}-\frac{1}{\sqrt{5}} \frac{1}{1-r_{-} x}
$$

Therefore, $\sum_{k \geq 0} f_{k} x^{k}=\sum_{k \geq 0} \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{k} x^{k}-\sum_{k \geq 0} \frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{k} x^{k}$
and we conclude that $f_{k}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{k}$.
As $k \rightarrow+\infty$, the second term goes to zero, so $f_{k} \approx \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{k}$
Practicality: $(1+\sqrt{5}) / 2 \approx 1.61803$ and $1 \mathrm{mi} \approx 1.609344 \mathrm{~km}$

Solving recurrence relations with repeated roots

With repeated roots in the denominator, the result is not quite as nice.
Example. Find the partial fraction decomposition of $\frac{x}{(1-2 x)^{2}(1+5 x)}$. Since $(1-2 x)^{2}$ is a repeated root,

$$
\frac{x}{(1-2 x)^{2}(1+5 x)}=\frac{A}{(1-2 x)}+\frac{B}{(1-2 x)^{2}}+\frac{C}{(1+5 x)} .
$$

Clearing the denominator gives:

$$
x=A(1-2 x)(1+5 x)+B(1+5 x)+C(1-2 x)^{2} .
$$

When $x=\frac{1}{2}, \quad \frac{1}{2}=0+B\left(1+\frac{5}{2}\right)+0$; so $B=\frac{1}{7}$.
When $x=-\frac{1}{5},-\frac{1}{5}=0+0+C\left(1+\frac{2}{5}\right)^{2}$; so $C=\frac{-5}{49}$.
Equating the coefficients of x^{0}, we see $A+B+C=0$. We conclude $A=\frac{-2}{49}$.

$$
\frac{x}{(1-2 x)^{2}(1+5 x)}=\frac{-\frac{2}{49}}{(1-2 x)}+\frac{\frac{7}{49}}{(1-2 x)^{2}}+\frac{-\frac{5}{49}}{(1+5 x)}
$$

Solving recurrence relations with repeated roots

Example. Let $\left\{h_{k}\right\}_{k \geq 0}$ be a sequence satisfying

$$
h_{k}+h_{k-1}-16 h_{k-2}+20 h_{k-3}=0,
$$

with initial conditions $h_{0}=1, h_{1}=1$, and $h_{2}=-1$.
Find the generating function and formula for h_{k}.

$$
\begin{array}{rrr}
h(x) & = & h_{0}+h_{1} x+h_{2} x^{2}+h_{3} x^{3}+\cdots+h_{k} x^{k}+\cdots, \\
+x h(x) & = & h_{0} x+h_{1} x^{2}+h_{2} x^{3}+\cdots+h_{k-1} x^{k}+\cdots, \\
-16 x^{2} h(x) & = & -16 h_{0} x^{2}-16 h_{1} x^{3}+\cdots-16 h_{k-2} x^{k}+\cdots, \\
+20 x^{3} h(x) & = & 20 h_{0} x^{3}+\cdots+20 h_{k-3} x^{k}+\cdots, \\
\hline
\end{array}
$$

Therefore, $h(x)=$
Since $\frac{1}{(1-y)^{m}}=\sum_{k \geq 0}\left(\binom{m}{k}\right) y^{k}$,
we see $\frac{1}{(1-2 x)^{2}}=\sum_{k \geq 0}\binom{k+1}{k}(2 x)^{k}=\sum_{k \geq 0}(k+1) 2^{k} x^{k}$.
We conclude that $h_{k}=$

