Principle of Inclusion-Exclusion

Example. Suppose that in this class, 14 students play soccer and 11 students play basketball. How many students play a sport?
Solution.

Principle of Inclusion-Exclusion

Example. Suppose that in this class, 14 students play soccer and 11 students play basketball. How many students play a sport?
Solution.

Let S be the set of students who play soccer and B be the set of students who play basketball.

Then, $|S \cup B|=|S|+|B|$

Principle of Inclusion-Exclusion

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}(\mathcal{U}$ for universe $)$ and the sets A_{i} are pairwise disjoint, we have $|A|=\left|A_{1}\right|+\cdots+\left|A_{k}\right|$.

Principle of Inclusion-Exclusion

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}(\mathcal{U}$ for universe $)$ and the sets A_{i} are pairwise disjoint, we have $|A|=\left|A_{1}\right|+\cdots+\left|A_{k}\right|$.

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ and the A_{i} are not pairwise disjoint, we must apply the principle of inclusion-exclusion to determine $|A|$:

Principle of Inclusion-Exclusion

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}(\mathcal{U}$ for universe $)$ and the sets A_{i} are pairwise disjoint, we have $|A|=\left|A_{1}\right|+\cdots+\left|A_{k}\right|$.

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ and the A_{i} are not pairwise disjoint, we must apply the principle of inclusion-exclusion to determine $|A|$:

$$
\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right| \quad-\left|A_{1} \cap A_{2}\right|
$$

Principle of Inclusion-Exclusion

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}(\mathcal{U}$ for universe $)$ and the sets A_{i} are pairwise disjoint, we have $|A|=\left|A_{1}\right|+\cdots+\left|A_{k}\right|$.

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ and the A_{i} are not pairwise disjoint, we must apply the principle of inclusion-exclusion to determine $|A|$:

$$
\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right| \quad-\left|A_{1} \cap A_{2}\right|
$$

Principle of Inclusion-Exclusion

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}(\mathcal{U}$ for universe $)$ and the sets A_{i} are pairwise disjoint, we have $|A|=\left|A_{1}\right|+\cdots+\left|A_{k}\right|$.

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ and the A_{i} are not pairwise disjoint, we must apply the principle of inclusion-exclusion to determine $|A|$:

$$
\begin{aligned}
\left|A_{1} \cup A_{2}\right|= & \left|A_{1}\right|+\left|A_{2}\right| \quad-\left|A_{1} \cap A_{2}\right| \\
\left|A_{1} \cup A_{2} \cup A_{3}\right|= & \left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{1} \cap A_{2}\right|-\left|A_{1} \cap A_{3}\right| \\
& -\left|A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{2} \cap A_{3}\right| \\
\left|A_{1} \cup \cdots \cup A_{m}\right|= & \sum\left|A_{i}\right|-\sum\left|A_{i} \cap A_{j}\right|+\sum\left|A_{i} \cap A_{j} \cap A_{k}\right| \cdots
\end{aligned}
$$

Principle of Inclusion-Exclusion

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ (\mathcal{U} for universe) and the sets A_{i} are pairwise disjoint, we have $|A|=\left|A_{1}\right|+\cdots+\left|A_{k}\right|$.

When $A=A_{1} \cup \cdots \cup A_{k} \subset \mathcal{U}$ and the A_{i} are not pairwise disjoint, we must apply the principle of inclusion-exclusion to determine $|A|$:

$$
\begin{aligned}
\left|A_{1} \cup A_{2}\right|= & \left|A_{1}\right|+\left|A_{2}\right| \quad-\left|A_{1} \cap A_{2}\right| \\
\left|A_{1} \cup A_{2} \cup A_{3}\right|= & \left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{1} \cap A_{2}\right|-\left|A_{1} \cap A_{3}\right| \\
& -\left|A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{2} \cap A_{3}\right| \\
\left|A_{1} \cup \cdots \cup A_{m}\right|= & \sum\left|A_{i}\right|-\sum\left|A_{i} \cap A_{j}\right|+\sum\left|A_{i} \cap A_{j} \cap A_{k}\right| \cdots
\end{aligned}
$$

It may be more convenient to apply inclusion/exclusion where the A_{i} are forbidden subsets of \mathcal{U}, in which case \qquad .

mmm. . .PIE

The key to using the principle of inclusion-exclusion is determining the right choice of A_{i}. The A_{i} and their intersections should be easy to count and easy to characterize.

mmm. . .PIE

The key to using the principle of inclusion-exclusion is determining the right choice of A_{i}. The A_{i} and their intersections should be easy to count and easy to characterize.
Notation: $\pi=p_{1} p_{2} \cdots p_{n}$ is the one-line notation for a permutation of $[\mathrm{n}]$ whose first element is p_{1}, second element is p_{2}, etc.
Example. How many permutations $p=p_{1} p_{2} \cdots p_{n}$ are there in which at least one of p_{1} and p_{2} are even?

mmm. . .PIE

The key to using the principle of inclusion-exclusion is determining the right choice of A_{i}. The A_{i} and their intersections should be easy to count and easy to characterize.

Notation: $\pi=p_{1} p_{2} \cdots p_{n}$ is the one-line notation for a permutation of $[\mathrm{n}]$ whose first element is p_{1}, second element is p_{2}, etc.

Example. How many permutations $p=p_{1} p_{2} \cdots p_{n}$ are there in which at least one of p_{1} and p_{2} are even?

Solution. Let \mathcal{U} be the set of n-permutations.
Let A_{1} be the set of permutations where p_{1} is even.
Let A_{2} be the set of permutations where p_{2} is even.
In words, $A_{1} \cap A_{2}$ is the set of n-permutations

mmm. . .PIE

The key to using the principle of inclusion-exclusion is determining the right choice of A_{i}. The A_{i} and their intersections should be easy to count and easy to characterize.

Notation: $\pi=p_{1} p_{2} \cdots p_{n}$ is the one-line notation for a permutation of $[\mathrm{n}]$ whose first element is p_{1}, second element is p_{2}, etc.

Example. How many permutations $p=p_{1} p_{2} \cdots p_{n}$ are there in which at least one of p_{1} and p_{2} are even?

Solution. Let \mathcal{U} be the set of n-permutations.
Let A_{1} be the set of permutations where p_{1} is even.
Let A_{2} be the set of permutations where p_{2} is even.
In words, $A_{1} \cap A_{2}$ is the set of n-permutations \qquad
Now calculate: $\left|A_{1}\right|=\quad\left|A_{2}\right|=$ $\left|A_{1} \cap A_{2}\right|=$

mmm. . .PIE

The key to using the principle of inclusion-exclusion is determining the right choice of A_{i}. The A_{i} and their intersections should be easy to count and easy to characterize.

Notation: $\pi=p_{1} p_{2} \cdots p_{n}$ is the one-line notation for a permutation of $[\mathrm{n}]$ whose first element is p_{1}, second element is p_{2}, etc.

Example. How many permutations $p=p_{1} p_{2} \cdots p_{n}$ are there in which at least one of p_{1} and p_{2} are even?

Solution. Let \mathcal{U} be the set of n-permutations.
Let A_{1} be the set of permutations where p_{1} is even.
Let A_{2} be the set of permutations where p_{2} is even.
In words, $A_{1} \cap A_{2}$ is the set of n-permutations \qquad
Now calculate: $\left|A_{1}\right|=\quad\left|A_{2}\right|=$ $\left|A_{1} \cap A_{2}\right|=$
Applying PIE: So $\left|A_{1} \cup A_{2}\right|=$

mmm. . .PIE

Example. Find the number of integers between 1 and 1000 that are not divisible by 5,6 , or 8 .

mmm. . .PIE

Example. Find the number of integers between 1 and 1000 that are not divisible by 5,6 , or 8 .

Solution. Let $\mathcal{U}=\{n \in \mathbb{Z}$ such that $1 \leq n \leq 1000\}$. Let $A_{1} \subset \mathcal{U}$ be the multiples of $5, A_{2} \subset \mathcal{U}$ be the multiples of 6 , and $A_{3} \subset \mathcal{U}$ be the multiples of 8 . We want $|\mathcal{U}|-\left|A_{1} \cup A_{2} \cup A_{3}\right|$.

mmm. . .PIE

Example. Find the number of integers between 1 and 1000 that are not divisible by 5,6 , or 8 .

Solution. Let $\mathcal{U}=\{n \in \mathbb{Z}$ such that $1 \leq n \leq 1000\}$. Let $A_{1} \subset \mathcal{U}$ be the multiples of $5, A_{2} \subset \mathcal{U}$ be the multiples of 6 , and $A_{3} \subset \mathcal{U}$ be the multiples of 8 . We want $|\mathcal{U}|-\left|A_{1} \cup A_{2} \cup A_{3}\right|$.

In words, $A_{1} \cap A_{2}$ is the set of integers

mmm. . .PIE

Example. Find the number of integers between 1 and 1000 that are not divisible by 5,6 , or 8 .

Solution. Let $\mathcal{U}=\{n \in \mathbb{Z}$ such that $1 \leq n \leq 1000\}$. Let $A_{1} \subset \mathcal{U}$ be the multiples of $5, A_{2} \subset \mathcal{U}$ be the multiples of 6 , and $A_{3} \subset \mathcal{U}$ be the multiples of 8 . We want $|\mathcal{U}|-\left|A_{1} \cup A_{2} \cup A_{3}\right|$.

In words, $A_{1} \cap A_{2}$ is the set of integers
$A_{1} \cap A_{3}$ is
$A_{2} \cap A_{3}$ is
and $A_{1} \cap A_{2} \cap A_{3}$ is the set of integers that are

mmm. . PIE

Example. Find the number of integers between 1 and 1000 that are not divisible by 5,6 , or 8 .

Solution. Let $\mathcal{U}=\{n \in \mathbb{Z}$ such that $1 \leq n \leq 1000\}$. Let $A_{1} \subset \mathcal{U}$ be the multiples of $5, A_{2} \subset \mathcal{U}$ be the multiples of 6 , and $A_{3} \subset \mathcal{U}$ be the multiples of 8 . We want $|\mathcal{U}|-\left|A_{1} \cup A_{2} \cup A_{3}\right|$.

In words, $A_{1} \cap A_{2}$ is the set of integers
$A_{1} \cap A_{3}$ is
$A_{2} \cap A_{3}$ is
and $A_{1} \cap A_{2} \cap A_{3}$ is the set of integers that are
Now calculate: $\left|A_{1}\right|=\quad\left|A_{2}\right|=\quad\left|A_{3}\right|=$
$\left|A_{1} \cap A_{2}\right|=\quad\left|A_{1} \cap A_{3}\right|=\quad\left|A_{2} \cap A_{3}\right|=$
$\left|A_{1} \cap A_{2} \cap A_{3}\right|=$
And finally: So $|\mathcal{U}|-\left|A_{1} \cup A_{2} \cup A_{3}\right|=$

Combinations with Repetitions

Quick review
1 How many ways are there to choose k elements out of the set $\left\{1 \cdot a_{1}, 1 \cdot a_{2}, \cdots, 1 \cdot a_{n}\right\}$?

Combinations with Repetitions

Quick review

1 How many ways are there to choose k elements out of the set $\left\{1 \cdot a_{1}, 1 \cdot a_{2}, \cdots, 1 \cdot a_{n}\right\}$?

2 How many ways are there to choose k elements out of the set $\left\{k \cdot a_{1}, k \cdot a_{2}, \cdots, k \cdot a_{n}\right\} ?\left(\right.$ really $\left.\left\{\infty \cdot a_{1}, \infty \cdot a_{2}, \cdots, \infty \cdot a_{n}\right\}\right)$

Combinations with Repetitions

Quick review

1 How many ways are there to choose k elements out of the set $\left\{1 \cdot a_{1}, 1 \cdot a_{2}, \cdots, 1 \cdot a_{n}\right\}$?

2 How many ways are there to choose k elements out of the set $\left\{k \cdot a_{1}, k \cdot a_{2}, \cdots, k \cdot a_{n}\right\} ?\left(\right.$ really $\left.\left\{\infty \cdot a_{1}, \infty \cdot a_{2}, \cdots, \infty \cdot a_{n}\right\}\right)$

What we would like to calculate is:
In how many ways can we choose k elements out of an arbitrary multiset?

Now, it's as easy as PIE.

Combinations with Repetitions

Example. Determine the number of 10 -combinations of the multiset $S=\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Combinations with Repetitions

Example. Determine the number of 10 -combinations of the multiset $S=\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.
Game plan: Let \mathcal{U} be the set of 10 -combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10 -combs that violate the conditions of S

Combinations with Repetitions

Example. Determine the number of 10 -combinations of the multiset $S=\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.
Game plan: Let \mathcal{U} be the set of 10 -combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10 -combs that violate the conditions of S
Define A_{1} to be 10 -combs that include at least \qquad a's.

Combinations with Repetitions

Example. Determine the number of 10 -combinations of the multiset $S=\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.
Game plan: Let \mathcal{U} be the set of 10 -combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10 -combs that violate the conditions of S
Define A_{1} to be 10 -combs that include at least __ a's.
Define A_{2} to be 10 -combs that include at least __ b 's.
Define A_{3} to be 10 -combs that include at least __ c 's.

Combinations with Repetitions

Example. Determine the number of 10 -combinations of the multiset $S=\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.
Game plan: Let \mathcal{U} be the set of 10 -combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10 -combs that violate the conditions of S

Define A_{1} to be 10 -combs that include at least __ a's.
Define A_{2} to be 10 -combs that include at least __ b 's.
Define A_{3} to be 10 -combs that include at least __ c 's.
In words, $A_{1} \cap A_{2}$ are those 10 -combs that
$A_{1} \cap A_{3}: \quad A_{2} \cap A_{3}:$
$A_{1} \cap A_{2} \cap A_{3}$

Combinations with Repetitions

Example. Determine the number of 10 -combinations of the multiset $S=\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.
Game plan: Let \mathcal{U} be the set of 10 -combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10 -combs that violate the conditions of S

Define A_{1} to be 10 -combs that include at least __ a's.
Define A_{2} to be 10 -combs that include at least __ b 's.
Define A_{3} to be 10 -combs that include at least __ c 's.
In words, $A_{1} \cap A_{2}$ are those 10 -combs that
$A_{1} \cap A_{3}:$
$A_{1} \cap A_{2} \cap A_{3}$
Now calculate: $|\mathcal{U}|=\left|A_{1}\right|=$

Combinations with Repetitions

Example. Determine the number of 10 -combinations of the multiset $S=\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.
Game plan: Let \mathcal{U} be the set of 10 -combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10 -combs that violate the conditions of S

Define A_{1} to be 10 -combs that include at least __ a's.
Define A_{2} to be 10 -combs that include at least __ b 's.
Define A_{3} to be 10 -combs that include at least __ c 's.
In words, $A_{1} \cap A_{2}$ are those 10 -combs that
$A_{1} \cap A_{3}: \quad A_{2} \cap A_{3}:$
$A_{1} \cap A_{2} \cap A_{3}$
Now calculate: $|\mathcal{U}|=\left|A_{1}\right|=\quad\left|A_{2}\right|=\left(\binom{3}{5}\right) \quad\left|A_{3}\right|=\left(\binom{3}{4}\right)$
$\left|A_{1} \cap A_{2}\right|=3 \quad\left|A_{1} \cap A_{3}\right|=1 \quad\left|A_{2} \cap A_{3}\right|=0 \quad\left|A_{1} \cap A_{2} \cap A_{3}\right|=0$
And finally: So $|\mathcal{U}|-\left|A_{1} \cup A_{2} \cup A_{3}\right|=$

Derangements

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

Derangements

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

This is a derangement of ten objects.
Definition: An n-derangement is an n-permutation $\pi=p_{1} p_{2} \cdots p_{n}$ such that $p_{1} \neq 1, p_{2} \neq 2, \cdots, p_{n} \neq n$.

Note: A derangement is a permutation without fixed points $\pi(i)=i$.

Derangements

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

This is a derangement of ten objects.
Definition: An n-derangement is an n-permutation $\pi=p_{1} p_{2} \cdots p_{n}$ such that $p_{1} \neq 1, p_{2} \neq 2, \cdots, p_{n} \neq n$.

Note: A derangement is a permutation without fixed points $\pi(i)=i$.
Notation: We let D_{n} be the number of all n-derangements.
When you see D_{n}, think combinatorially: "The number of ways to return n hats to n people so no one gets his/her own hat back"

Calculating the number of derangements

Example. Calculate D_{n}.
Solution. Let \mathcal{U} be the set of all n-permutations.
Remove bad permutations using PIE.
For all i from 1 to n, define A_{i} to be n-perms where $p_{i}=i$.

Calculating the number of derangements

Example. Calculate D_{n}.
Solution. Let \mathcal{U} be the set of all n-permutations.
Remove bad permutations using PIE.
For all i from 1 to n, define A_{i} to be n-perms where $p_{i}=i$.
$\underline{\ln \text { words, },} A_{i} \cap A_{j}$ are n-perms where

Calculating the number of derangements

Example. Calculate D_{n}.
Solution. Let \mathcal{U} be the set of all n-permutations.
Remove bad permutations using PIE.
For all i from 1 to n, define A_{i} to be n-perms where $p_{i}=i$.
In words, $A_{i} \cap A_{j}$ are n-perms where
$A_{i} \cap A_{j} \cap A_{k}$ are n-perms where
In general, $A_{i_{1}} \cap \cdots \cap A_{i_{k}}$ are n-perms with $p_{i_{1}}=i_{1}, \cdots, p_{i_{k}}=i_{k}$.
Now calculate: $|\mathcal{U}|=\quad\left|A_{1}\right|=\quad\left|A_{2}\right|=$

Calculating the number of derangements

Example. Calculate D_{n}.
Solution. Let \mathcal{U} be the set of all n-permutations.
Remove bad permutations using PIE.
For all i from 1 to n, define A_{i} to be n-perms where $p_{i}=i$.
$\underline{\text { In words, }}, A_{i} \cap A_{j}$ are n-perms where
$A_{i} \cap A_{j} \cap A_{k}$ are n-perms where
In general, $A_{i_{1}} \cap \cdots \cap A_{i_{k}}$ are n-perms with $p_{i_{1}}=i_{1}, \cdots, p_{i_{k}}=i_{k}$.
Now calculate: $|\mathcal{U}|=\quad\left|A_{1}\right|=\quad\left|A_{2}\right|=$
For all i and $j,\left|A_{i} \cap A_{j}\right|=$

Calculating the number of derangements

Example. Calculate D_{n}.
Solution. Let \mathcal{U} be the set of all n-permutations.
Remove bad permutations using PIE.
For all i from 1 to n, define A_{i} to be n-perms where $p_{i}=i$.
$\underline{\text { In words, }} A_{i} \cap A_{j}$ are n-perms where
$A_{i} \cap A_{j} \cap A_{k}$ are n-perms where
In general, $A_{i_{1}} \cap \cdots \cap A_{i_{k}}$ are n-perms with $p_{i_{1}}=i_{1}, \cdots, p_{i_{k}}=i_{k}$.
Now calculate: $|\mathcal{U}|=\quad\left|A_{1}\right|=\quad\left|A_{2}\right|=$
For all i and $j,\left|A_{i} \cap A_{j}\right|=$
When intersecting k sets, $\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|=$
Recall: $\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum\left|A_{i}\right|-\sum\left|A_{i} \cap A_{j}\right|+\sum\left|A_{i} \cap A_{j} \cap A_{k}\right| \cdots$

Calculating the number of derangements

Example. Calculate D_{n}.
Solution. Let \mathcal{U} be the set of all n-permutations.
Remove bad permutations using PIE.
For all i from 1 to n, define A_{i} to be n-perms where $p_{i}=i$.
In words, $A_{i} \cap A_{j}$ are n-perms where
$A_{i} \cap A_{j} \cap A_{k}$ are n-perms where
In general, $A_{i_{1}} \cap \cdots \cap A_{i_{k}}$ are n-perms with $p_{i_{1}}=i_{1}, \cdots, p_{i_{k}}=i_{k}$.
Now calculate: $|\mathcal{U}|=\quad\left|A_{1}\right|=\quad\left|A_{2}\right|=$
For all i and $j,\left|A_{i} \cap A_{j}\right|=$
When intersecting k sets, $\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|=$
Recall: $\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum\left|A_{i}\right|-\sum\left|A_{i} \cap A_{j}\right|+\sum\left|A_{i} \cap A_{j} \cap A_{k}\right| \cdots$

Therefore, $D_{n}=|\mathcal{U}|-\left|A_{1} \cup \cdots \cup A_{n}\right|=$

Randomly returning hats

Upon simplification, we see

$$
\begin{aligned}
D_{n} & =n!-\binom{n}{1}(n-1)!+\binom{n}{2}(n-2)!-\cdots+(-1)^{n}\binom{n}{n} 0! \\
& =n!-\quad \frac{n!}{1!} \quad+\quad \frac{n!}{2!} \quad-\cdots+(-1)^{n} \frac{n!}{n!} \\
& =n!\left[1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n} \frac{1}{n!}\right]
\end{aligned}
$$

Randomly returning hats

Upon simplification, we see

$$
\begin{aligned}
D_{n} & =n!-\binom{n}{1}(n-1)!+\binom{n}{2}(n-2)!-\cdots+(-1)^{n}\binom{n}{n} 0! \\
& =n!-\quad \frac{n!}{1!} \quad+\quad \frac{n!}{2!} \quad-\cdots+(-1)^{n} \frac{n!}{n!} \\
& =n!\left[1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n} \frac{1}{n!}\right]
\end{aligned}
$$

Recall: Taylor series expansion of e^{x} :

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Randomly returning hats

Upon simplification, we see

$$
\begin{aligned}
D_{n} & =n!-\binom{n}{1}(n-1)!+\binom{n}{2}(n-2)!-\cdots+(-1)^{n}\binom{n}{n} 0! \\
& =n!-\quad \frac{n!}{1!} \quad+\quad \frac{n!}{2!} \quad-\cdots+(-1)^{n} \frac{n!}{n!} \\
& =n!\left[1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n} \frac{1}{n!}\right]
\end{aligned}
$$

Recall: Taylor series expansion of e^{x} :

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Plug in $x=-1$ and truncate after n terms to see that $e^{-1} \approx\left[1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n} \frac{1}{n!}\right]$

Randomly returning hats

Upon simplification, we see

$$
\begin{aligned}
D_{n} & =n!-\binom{n}{1}(n-1)!+\binom{n}{2}(n-2)!-\cdots+(-1)^{n}\binom{n}{n} 0! \\
& =n!-\quad \frac{n!}{1!} \quad+\quad \frac{n!}{2!} \quad-\cdots+(-1)^{n} \frac{n!}{n!} \\
& =n!\left[1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n} \frac{1}{n!}\right]
\end{aligned}
$$

Recall: Taylor series expansion of e^{x} :

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Plug in $x=-1$ and truncate after n terms to see that $e^{-1} \approx\left[1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n} \frac{1}{n!}\right]$

Conclusion: If n people go to a party and the hats are passed back randomly, the probability that no one gets his or her hat back at the party is $D_{n} / n!$, which is approximately $1 / e \approx 37 \%$.

Combinatorial proof involving D_{n}

Recall: The combinatorial interpretation of D_{n} is: "The number of ways to return n hats to n people so no one gets his/her own hat back"

Example. Prove the following recurrence relation for D_{n} combinatorially.

$$
D_{n}=(n-1)\left(D_{n-2}+D_{n-1}\right)
$$

A formula for Stirling numbers (p. 90)

Recall: $S(n, k)=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the number of partitions of the set $[n]$ into exactly k parts

A formula for Stirling numbers (p. 90)

Recall: $S(n, k)=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the number of partitions of the set [n] into exactly k parts

A formula for Stirling numbers (p. 90)

Recall: $S(n, k)=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the number of partitions of the set [n] into exactly k parts, and $k!S(n, k)$ is the number of onto functions $[n] \rightarrow[k]$.

A formula for Stirling numbers (p. 90)

Recall: $S(n, k)=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the number of partitions of the set [n] into exactly k parts, and $k!S(n, k)$ is the number of onto functions $[n] \rightarrow[k]$. Question: What is a formula for $S(n, k)$?

A formula for Stirling numbers (p. 90)

Recall: $S(n, k)=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the number of partitions of the set [n] into exactly k parts, and $k!S(n, k)$ is the number of onto functions $[n] \rightarrow[k]$. Question: What is a formula for $S(n, k)$?
Solution. We will find the number of surjections from $[n]$ to $[k]$. Use PIE with $\mathcal{U}=$ set of all functions from $[n]$ to $[k]$. We will remove the "bad" functions where the range is not $[k]$.

A formula for Stirling numbers (p. 90)

Recall: $S(n, k)=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the number of partitions of the set [n] into exactly k parts, and $k!S(n, k)$ is the number of onto functions $[n] \rightarrow[k]$. Question: What is a formula for $S(n, k)$?
Solution. We will find the number of surjections from $[n]$ to $[k]$. Use PIE with $\mathcal{U}=$ set of all functions from $[n]$ to $[k]$. We will remove the "bad" functions where the range is not $[k]$.
Define A_{i} be the set of functions $f:[n] \rightarrow[k]$ where i is not "hit".

A formula for Stirling numbers (p. 90)

Recall: $S(n, k)=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the number of partitions of the set [n] into exactly k parts, and $k!S(n, k)$ is the number of onto functions $[n] \rightarrow[k]$.
Question: What is a formula for $S(n, k)$?
Solution. We will find the number of surjections from $[n]$ to $[k]$. Use PIE with $\mathcal{U}=$ set of all functions from $[n]$ to $[k]$. We will remove the "bad" functions where the range is not $[k]$. Define A_{i} be the set of functions $f:[n] \rightarrow[k]$ where i is not "hit". In words, $A_{i_{1}} \cap \cdots \cap A_{i_{j}}$ are functions where none of i_{1} through i_{j} are elements of the image.

A formula for Stirling numbers (p. 90)

Recall: $S(n, k)=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the number of partitions of the set [n] into exactly k parts, and $k!S(n, k)$ is the number of onto functions $[n] \rightarrow[k]$.
Question: What is a formula for $S(n, k)$?
Solution. We will find the number of surjections from $[n]$ to $[k]$. Use PIE with $\mathcal{U}=$ set of all functions from $[n]$ to $[k]$. We will remove the "bad" functions where the range is not [k]. Define A_{i} be the set of functions $f:[n] \rightarrow[k]$ where i is not "hit". In words, $A_{i_{1}} \cap \cdots \cap A_{i_{j}}$ are functions where none of i_{1} through i_{j} are elements of the image.
$\underline{\text { We calculate: }}|\mathcal{U}|=k^{n},\left|A_{i}\right|=(k-1)^{n},\left|A_{i} \cap A_{j}\right|=(k-2)^{n}$ When intersecting j sets, $\left|A_{i_{1}} \cap \cdots \cap A_{i j}\right|=(k-j)^{n}$.

A formula for Stirling numbers (p. 90)

Recall: $S(n, k)=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the number of partitions of the set [n] into exactly k parts, and $k!S(n, k)$ is the number of onto functions $[n] \rightarrow[k]$.
Question: What is a formula for $S(n, k)$?
Solution. We will find the number of surjections from $[n]$ to $[k]$. Use PIE with $\mathcal{U}=$ set of all functions from $[n]$ to $[k]$. We will remove the "bad" functions where the range is not [k]. Define A_{i} be the set of functions $f:[n] \rightarrow[k]$ where i is not "hit". In words, $A_{i_{1}} \cap \cdots \cap A_{i_{j}}$ are functions where none of i_{1} through i_{j} are elements of the image.
We calculate: $|\mathcal{U}|=k^{n},\left|A_{i}\right|=(k-1)^{n},\left|A_{i} \cap A_{j}\right|=(k-2)^{n}$ When intersecting j sets, $\left|A_{i_{1}} \cap \cdots \cap A_{i j}\right|=(k-j)^{n}$.
Therefore, $k!S(n, k)=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}(k-j)^{n}$; we conclude $S(n, k)=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j}(k-j)^{n}$

A formula for Stirling numbers (p. 90)

Recall: $S(n, k)=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the number of partitions of the set $[n]$ into exactly k parts, and $k!S(n, k)$ is the number of onto functions $[n] \rightarrow[k]$.
Question: What is a formula for $S(n, k)$?
Solution. We will find the number of surjections from $[n]$ to $[k]$. Use PIE with $\mathcal{U}=$ set of all functions from $[n]$ to $[k]$. We will remove the "bad" functions where the range is not [k]. Define A_{i} be the set of functions $f:[n] \rightarrow[k]$ where i is not "hit". In words, $A_{i_{1}} \cap \cdots \cap A_{i_{j}}$ are functions where none of i_{1} through i_{j} are elements of the image.
We calculate: $|\mathcal{U}|=k^{n},\left|A_{i}\right|=(k-1)^{n},\left|A_{i} \cap A_{j}\right|=(k-2)^{n}$ When intersecting j sets, $\left|A_{i_{1}} \cap \cdots \cap A_{i j}\right|=(k-j)^{n}$.
Therefore, $k!S(n, k)=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}(k-j)^{n}$; we conclude $S(n, k)=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j}(k-j)^{n}=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} j^{n}$.

A formula for Bell numbers (p. 166)

Recall: B_{n} is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$
B_{n}=\sum_{k \geq 0}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j j^{n}}
$$

A formula for Bell numbers (p. 166)

Recall: B_{n} is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$
B_{n}=\sum_{k \geq 0}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!}(-1)^{k-j j^{n}}
$$

A formula for Bell numbers (p. 166)

Recall: B_{n} is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$
\begin{aligned}
B_{n} & =\sum_{k \geq 0}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!}(-1)^{k-j} j^{n} \\
& =\sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!}(-1)^{k-j} j^{n}
\end{aligned}
$$

A formula for Bell numbers (p. 166)

Recall: B_{n} is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$
\begin{aligned}
B_{n} & =\sum_{k \geq 0}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!}(-1)^{k-j} j^{n} \\
& =\sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!}(-1)^{k-j} j^{n}=\sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!}
\end{aligned}
$$

A formula for Bell numbers (p. 166)

Recall: B_{n} is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$
\begin{aligned}
B_{n} & =\sum_{k \geq 0}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!}(-1)^{k-j} j^{n} \\
& =\sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!}(-1)^{k-j} j^{n}=\sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!} \\
& =\sum_{j \geq 0} \sum_{k \geq j} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!}
\end{aligned}
$$

A formula for Bell numbers (p. 166)

Recall: B_{n} is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$
\begin{aligned}
B_{n} & =\sum_{k \geq 0}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!}(-1)^{k-j} j^{n} \\
& =\sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!}(-1)^{k-j} j^{n}=\sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!} \\
& =\sum_{j \geq 0} \sum_{k \geq j} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!}=\sum_{j \geq 0} \frac{j^{n}}{j!} \sum_{k \geq j} \frac{(-1)^{k-j}}{(k-j)!}
\end{aligned}
$$

A formula for Bell numbers (p. 166)

Recall: B_{n} is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$
\begin{aligned}
B_{n} & =\sum_{k \geq 0}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!}(-1)^{k-j} j^{n} \\
& =\sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!}(-1)^{k-j} j^{n}=\sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!} \\
& =\sum_{j \geq 0} \sum_{k \geq j} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!}=\sum_{j \geq 0} \frac{j^{n}}{j!} \sum_{m \geq 0} \frac{(-1)^{m}}{(m)!}
\end{aligned}
$$

A formula for Bell numbers (p. 166)

Recall: B_{n} is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$
\begin{aligned}
B_{n} & =\sum_{k \geq 0}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!}(-1)^{k-j} j^{n} \\
& =\sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!}(-1)^{k-j} j^{n}=\sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!} \\
& =\sum_{j \geq 0} \sum_{k \geq j} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!}=\sum_{j \geq 0} \frac{j^{n}}{j!} \sum_{m \geq 0} \frac{(-1)^{m}}{(m)!}=\sum_{j \geq 0} \frac{j^{n}}{j!} \frac{1}{e}
\end{aligned}
$$

A formula for Bell numbers (p. 166)

Recall: B_{n} is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$
\begin{aligned}
B_{n} & =\sum_{k \geq 0}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!}(-1)^{k-j} j^{n} \\
& =\sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!}(-1)^{k-j} j^{n}=\sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!} \\
& =\sum_{j \geq 0} \sum_{k \geq j} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!}=\sum_{j \geq 0} \frac{j^{n}}{j!} \sum_{m \geq 0} \frac{(-1)^{m}}{(m)!}=\sum_{j \geq 0} \frac{j^{n}}{j!} \frac{1}{e}
\end{aligned}
$$

Theorem 4.3.3. For any $n>0, B_{n}=\frac{1}{e} \sum_{j \geq 0} \frac{j^{n}}{j!}$.

A formula for Bell numbers (p. 166)

Recall: B_{n} is the number of partitions of $[n]$ into any number of parts. Manipulate our expression from prev. page to find a formula.

$$
\begin{aligned}
B_{n} & =\sum_{k \geq 0}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{k \geq 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!}(-1)^{k-j} j^{n} \\
& =\sum_{k \geq 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!}(-1)^{k-j} j^{n}=\sum_{k \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!} \\
& =\sum_{j \geq 0} \sum_{k \geq j} \frac{(-1)^{k-j}}{(k-j)!} \frac{j^{n}}{j!}=\sum_{j \geq 0} \frac{j^{n}}{j!} \sum_{m \geq 0} \frac{(-1)^{m}}{(m)!}=\sum_{j \geq 0} \frac{j^{n}}{j!} \frac{1}{e}
\end{aligned}
$$

Theorem 4.3.3. For any $n>0, B_{n}=\frac{1}{e} \sum_{j \geq 0} \frac{j^{n}}{j!}$.
For example, $B_{5}=\frac{1}{e}\left(\frac{0^{5}}{0!}+\frac{1^{5}}{1!}+\frac{2^{5}}{2!}+\frac{3^{5}}{3!}+\frac{4^{5}}{4!}+\frac{5^{5}}{5!}+\cdots\right)=52$.

