Example. Suppose that in this class, 14 students play soccer and 11 students play basketball. How many students play a sport? *Solution.*

Example. Suppose that in this class, 14 students play soccer and 11 students play basketball. How many students play a sport? *Solution.*

Let *S* be the set of students who play soccer and *B* be the set of students who play basketball. Then, $|S \cup B| = |S| + |B|$ _____.

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} for universe) and the sets A_i are *pairwise disjoint*, we have $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} for universe) and the sets A_i are *pairwise disjoint*, we have $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} for universe) and the sets A_i are *pairwise disjoint*, we have $|A| = |A_1| + \cdots + |A_k|$.

$$|A_1 \cup A_2| = |A_1| + |A_2| \qquad -|A_1 \cap A_2|$$

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} for universe) and the sets A_i are *pairwise disjoint*, we have $|A| = |A_1| + \cdots + |A_k|$.

$$|A_1 \cup A_2| = |A_1| + |A_2| \qquad -|A_1 \cap A_2|$$

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} for universe) and the sets A_i are *pairwise disjoint*, we have $|A| = |A_1| + \cdots + |A_k|$.

$$\begin{aligned} |A_1 \cup A_2| &= |A_1| + |A_2| & - |A_1 \cap A_2| \\ |A_1 \cup A_2 \cup A_3| &= |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| \\ &- |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3| \end{aligned}$$

$$|A_1 \cup \cdots \cup A_m| = \sum |A_i| - \sum |A_i \cap A_j| + \sum |A_i \cap A_j \cap A_k| \cdots$$

When $A = A_1 \cup \cdots \cup A_k \subset \mathcal{U}$ (\mathcal{U} for universe) and the sets A_i are *pairwise disjoint*, we have $|A| = |A_1| + \cdots + |A_k|$.

When $A = A_1 \cup \cdots \cup A_k \subset U$ and the A_i are **not** pairwise disjoint, we must apply the principle of inclusion-exclusion to determine |A|:

$$\begin{aligned} |A_1 \cup A_2| &= |A_1| + |A_2| & - |A_1 \cap A_2| \\ |A_1 \cup A_2 \cup A_3| &= |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| \\ &- |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3| \end{aligned}$$

$$|A_1 \cup \cdots \cup A_m| = \sum |A_i| - \sum |A_i \cap A_j| + \sum |A_i \cap A_j \cap A_k| \cdots$$

It may be more convenient to apply inclusion/exclusion where the A_i are *forbidden* subsets of U, in which case ______

The key to using the principle of inclusion-exclusion is determining the right choice of A_i . The A_i and their intersections should be easy to count and easy to characterize.

The key to using the principle of inclusion-exclusion is determining the right choice of A_i . The A_i and their intersections should be easy to count and easy to characterize.

Notation: $\pi = p_1 p_2 \cdots p_n$ is the one-line notation for a permutation of [n] whose first element is p_1 , second element is p_2 , etc.

Example. How many permutations $p = p_1 p_2 \cdots p_n$ are there in which at least one of p_1 and p_2 are even?

The key to using the principle of inclusion-exclusion is determining the right choice of A_i . The A_i and their intersections should be easy to count and easy to characterize.

Notation: $\pi = p_1 p_2 \cdots p_n$ is the one-line notation for a permutation of [n] whose first element is p_1 , second element is p_2 , etc.

Example. How many permutations $p = p_1 p_2 \cdots p_n$ are there in which at least one of p_1 and p_2 are even?

Solution. Let \mathcal{U} be the set of *n*-permutations. Let A_1 be the set of permutations where p_1 is even. Let A_2 be the set of permutations where p_2 is even. In words, $A_1 \cap A_2$ is the set of *n*-permutations

The key to using the principle of inclusion-exclusion is determining the right choice of A_i . The A_i and their intersections should be easy to count and easy to characterize.

Notation: $\pi = p_1 p_2 \cdots p_n$ is the one-line notation for a permutation of [n] whose first element is p_1 , second element is p_2 , etc.

Example. How many permutations $p = p_1 p_2 \cdots p_n$ are there in which at least one of p_1 and p_2 are even?

Solution. Let \mathcal{U} be the set of *n*-permutations. Let A_1 be the set of permutations where p_1 is even. Let A_2 be the set of permutations where p_2 is even. In words, $A_1 \cap A_2$ is the set of *n*-permutations

$$\frac{\text{Now calculate:}}{|A_1|} = |A_2| = |A_2| =$$

The key to using the principle of inclusion-exclusion is determining the right choice of A_i . The A_i and their intersections should be easy to count and easy to characterize.

Notation: $\pi = p_1 p_2 \cdots p_n$ is the one-line notation for a permutation of [n] whose first element is p_1 , second element is p_2 , etc.

Example. How many permutations $p = p_1 p_2 \cdots p_n$ are there in which at least one of p_1 and p_2 are even?

Solution. Let \mathcal{U} be the set of *n*-permutations. Let A_1 be the set of permutations where p_1 is even. Let A_2 be the set of permutations where p_2 is even. In words, $A_1 \cap A_2$ is the set of *n*-permutations

Now calculate:
$$|A_1| =$$
 $|A_2| =$ $|A_1 \cap A_2| =$ Applying PIE:So $|A_1 \cup A_2| =$

Example. Find the number of integers between 1 and 1000 that are **not** divisible by 5, 6, or 8.

Example. Find the number of integers between 1 and 1000 that are **not** divisible by 5, 6, or 8.

Solution. Let $\mathcal{U} = \{n \in \mathbb{Z} \text{ such that } 1 \leq n \leq 1000\}$. Let $A_1 \subset \mathcal{U}$ be the multiples of 5, $A_2 \subset \mathcal{U}$ be the multiples of 6, and $A_3 \subset \mathcal{U}$ be the multiples of 8. We want $|\mathcal{U}| - |A_1 \cup A_2 \cup A_3|$.

Example. Find the number of integers between 1 and 1000 that are **not** divisible by 5, 6, or 8.

Solution. Let $\mathcal{U} = \{n \in \mathbb{Z} \text{ such that } 1 \leq n \leq 1000\}$. Let $A_1 \subset \mathcal{U}$ be the multiples of 5, $A_2 \subset \mathcal{U}$ be the multiples of 6, and $A_3 \subset \mathcal{U}$ be the multiples of 8. We want $|\mathcal{U}| - |A_1 \cup A_2 \cup A_3|$.

In words, $A_1 \cap A_2$ is the set of integers

Example. Find the number of integers between 1 and 1000 that are **not** divisible by 5, 6, or 8.

Solution. Let $\mathcal{U} = \{n \in \mathbb{Z} \text{ such that } 1 \leq n \leq 1000\}$. Let $A_1 \subset \mathcal{U}$ be the multiples of 5, $A_2 \subset \mathcal{U}$ be the multiples of 6, and $A_3 \subset \mathcal{U}$ be the multiples of 8. We want $|\mathcal{U}| - |A_1 \cup A_2 \cup A_3|$.

In words, $A_1 \cap A_2$ is the set of integers $A_1 \cap A_3$ is $A_2 \cap A_3$ is and $A_1 \cap A_2 \cap A_3$ is the set of integers that are

Example. Find the number of integers between 1 and 1000 that are **not** divisible by 5, 6, or 8.

Solution. Let $\mathcal{U} = \{n \in \mathbb{Z} \text{ such that } 1 \leq n \leq 1000\}$. Let $A_1 \subset \mathcal{U}$ be the multiples of 5, $A_2 \subset \mathcal{U}$ be the multiples of 6, and $A_3 \subset \mathcal{U}$ be the multiples of 8. We want $|\mathcal{U}| - |A_1 \cup A_2 \cup A_3|$.

In words, $A_1 \cap A_2$ is the set of integers $A_1 \cap A_3$ is $A_2 \cap A_3$ is and $A_1 \cap A_2 \cap A_3$ is the set of integers that are

 $\begin{array}{lll} \underline{\text{Now calculate:}} & |A_1| = & |A_2| = & |A_3| = \\ |A_1 \cap A_2| = & |A_1 \cap A_3| = & |A_2 \cap A_3| = \\ |A_1 \cap A_2 \cap A_3| = & \end{array}$

And finally: So $|\mathcal{U}| - |A_1 \cup A_2 \cup A_3| =$

Quick review

How many ways are there to choose k elements out of the set $\{1 \cdot a_1, 1 \cdot a_2, \cdots, 1 \cdot a_n\}$?

Quick review

- How many ways are there to choose k elements out of the set $\{1 \cdot a_1, 1 \cdot a_2, \cdots, 1 \cdot a_n\}$?
- 2 How many ways are there to choose k elements out of the set $\{k \cdot a_1, k \cdot a_2, \cdots, k \cdot a_n\}$? (really $\{\infty \cdot a_1, \infty \cdot a_2, \cdots, \infty \cdot a_n\}$)

Quick review

- How many ways are there to choose k elements out of the set $\{1 \cdot a_1, 1 \cdot a_2, \cdots, 1 \cdot a_n\}$?
- **2** How many ways are there to choose k elements out of the set $\{k \cdot a_1, k \cdot a_2, \dots, k \cdot a_n\}$? (really $\{\infty \cdot a_1, \infty \cdot a_2, \dots, \infty \cdot a_n\}$)

What we would like to calculate is:

In how many ways can we choose k elements out of an arbitrary multiset?

Now, it's as easy as PIE.

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that <u>violate</u> the conditions of *S*

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that <u>violate</u> the conditions of *S* Define A_1 to be 10-combs that include at least <u>a's</u>.

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that <u>violate</u> the conditions of *S*

Define A_1 to be 10-combs that include at least _____ a's. Define A_2 to be 10-combs that include at least _____ b's. Define A_3 to be 10-combs that include at least _____ c's.

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that <u>violate</u> the conditions of *S*

Define A_1 to be 10-combs that include at least _____ a's. Define A_2 to be 10-combs that include at least _____ b's. Define A_3 to be 10-combs that include at least _____ c's.

In words, $A_1 \cap A_2$ are those 10-combs that $A_1 \cap A_3$: $A_2 \cap A_3$: $A_1 \cap A_2 \cap A_3$

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that <u>violate</u> the conditions of *S*

Define A_1 to be 10-combs that include at least _____ a's. Define A_2 to be 10-combs that include at least _____ b's. Define A_3 to be 10-combs that include at least _____ c's.

In words, $A_1 \cap A_2$ are those 10-combs that $A_1 \cap A_3$: $A_2 \cap A_3$: $A_1 \cap A_2 \cap A_3$

<u>Now calculate</u>: $|\mathcal{U}| = |A_1| =$

Example. Determine the number of 10-combinations of the multiset $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Game plan: Let \mathcal{U} be the set of 10-combs of $\{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$. Use PIE to remove the 10-combs that violate the conditions of S

Define A_1 to be 10-combs that include at least _____ a's. Define A_2 to be 10-combs that include at least _____ b's. Define A_3 to be 10-combs that include at least _____ c's.

In words, $A_1 \cap A_2$ are those 10-combs that $A_1 \cap A_3$: $A_2 \cap A_3$: $A_1 \cap A_2 \cap A_3$

<u>Now calculate</u>: $|\mathcal{U}| = |A_1| = |A_2| = \binom{3}{5}$ $|A_3| = \binom{3}{4}$ $|A_1 \cap A_2| = 3$ $|A_1 \cap A_3| = 1$ $|A_2 \cap A_3| = 0$ $|A_1 \cap A_2 \cap A_3| = 0$ <u>And finally</u>: So $|\mathcal{U}| - |A_1 \cup A_2 \cup A_3| =$

Derangements

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

Derangements

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

This is a derangement of ten objects.

Definition: An *n*-derangement is an *n*-permutation $\pi = p_1 p_2 \cdots p_n$ such that $p_1 \neq 1$, $p_2 \neq 2$, \cdots , $p_n \neq n$.

Note: A derangement is a permutation without fixed points $\pi(i) = i$.

Derangements

At a party, 10 partygoers check their hats. They "have a good time", and are each handed a hat on the way out. In how many ways can the hats be returned so that no one is returned his/her own hat?

This is a derangement of ten objects.

Definition: An *n*-derangement is an *n*-permutation $\pi = p_1 p_2 \cdots p_n$ such that $p_1 \neq 1$, $p_2 \neq 2$, \cdots , $p_n \neq n$.

Note: A derangement is a permutation without fixed points $\pi(i) = i$. *Notation:* We let D_n be the number of all *n*-derangements.

When you see D_n , think combinatorially: "The number of ways to return *n* hats to *n* people so no one gets his/her own hat back"

Example. Calculate D_n .

Solution. Let U be the set of all *n*-permutations. Remove bad permutations using PIE. For all *i* from 1 to *n*, define A_i to be *n*-perms where $p_i = i$.

Example. Calculate D_n .

Solution. Let \mathcal{U} be the set of all *n*-permutations. Remove bad permutations using PIE. For all *i* from 1 to *n*, define A_i to be *n*-perms where $p_i = i$. In words, $A_i \cap A_i$ are *n*-perms where

```
Example. Calculate D_n.
```

Solution. Let \mathcal{U} be the set of all *n*-permutations. Remove bad permutations using PIE. For all *i* from 1 to *n*, define A_i to be *n*-perms where $p_i = i$. In words, $A_i \cap A_j$ are *n*-perms where $A_i \cap A_j \cap A_k$ are *n*-perms where In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are *n*-perms with $p_{i_1} = i_1, \cdots, p_{i_k} = i_k$. Now calculate: $|\mathcal{U}| = |A_1| = |A_2| =$

```
Example. Calculate D_n.
```

Solution. Let \mathcal{U} be the set of all *n*-permutations. Remove bad permutations using PIE. For all *i* from 1 to *n*, define A_i to be *n*-perms where $p_i = i$. In words, $A_i \cap A_j$ are *n*-perms where $A_i \cap A_j \cap A_k$ are *n*-perms where In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are *n*-perms with $p_{i_1} = i_1, \cdots, p_{i_k} = i_k$. Now calculate: $|\mathcal{U}| = |A_1| = |A_2| =$ For all *i* and *j*, $|A_i \cap A_j| =$

```
Example. Calculate D_n.
```

Solution. Let \mathcal{U} be the set of all *n*-permutations. Remove bad permutations using PIE. For all *i* from 1 to *n*, define A_i to be *n*-perms where $p_i = i$. In words, $A_i \cap A_i$ are *n*-perms where $A_i \cap A_i \cap A_k$ are *n*-perms where In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are *n*-perms with $p_{i_1} = i_1, \cdots, p_{i_k} = i_k$. Now calculate: $|\mathcal{U}| = |A_1| =$ $|A_2| =$ For all *i* and *j*, $|A_i \cap A_i| =$ When intersecting k sets, $|A_{i_1} \cap \cdots \cap A_{i_k}| =$ Recall: $|A_1 \cup \cdots \cup A_n| = \sum |A_i| - \sum |A_i \cap A_i| + \sum |A_i \cap A_i \cap A_k| \cdots$

Calculating the number of derangements

```
Example. Calculate D_n.
```

Solution. Let \mathcal{U} be the set of all *n*-permutations. Remove bad permutations using PIE. For all *i* from 1 to *n*, define A_i to be *n*-perms where $p_i = i$. In words, $A_i \cap A_i$ are *n*-perms where $A_i \cap A_i \cap A_k$ are *n*-perms where In general, $A_{i_1} \cap \cdots \cap A_{i_k}$ are *n*-perms with $p_{i_1} = i_1, \cdots, p_{i_k} = i_k$. Now calculate: $|\mathcal{U}| = |A_1| =$ $|A_2| =$ For all *i* and *j*, $|A_i \cap A_i| =$ When intersecting k sets, $|A_{i_1} \cap \cdots \cap A_{i_k}| =$ Recall: $|A_1 \cup \cdots \cup A_n| = \sum |A_i| - \sum |A_i \cap A_i| + \sum |A_i \cap A_i \cap A_k| \cdots$

Therefore, $D_n = |\mathcal{U}| - |A_1 \cup \cdots \cup A_n| =$

Upon simplification, we see

$$D_n = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \dots + (-1)^n \binom{n}{n} 0!$$

$$= n! - \frac{n!}{1!} + \frac{n!}{2!} - \dots + (-1)^n \frac{n!}{n!}$$

$$= n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}\right]$$

Upon simplification, we see

$$D_n = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \dots + (-1)^n \binom{n}{n} 0!$$

$$= n! - \frac{n!}{1!} + \frac{n!}{2!} - \dots + (-1)^n \frac{n!}{n!}$$

$$= n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}\right]$$

Recall: Taylor series expansion of e^x : $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$.

Upon simplification, we see

$$D_n = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \dots + (-1)^n \binom{n}{n} 0!$$

$$= n! - \frac{n!}{1!} + \frac{n!}{2!} - \dots + (-1)^n \frac{n!}{n!}$$

$$= n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}\right]$$

Recall: Taylor series expansion of
$$e^x$$
:
 $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$.
Plug in $x = -1$ and truncate after *n* terms to see that
 $e^{-1} \approx \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^n \frac{1}{n!}\right]$

Upon simplification, we see

$$D_n = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \dots + (-1)^n \binom{n}{n} 0!$$

$$= n! - \frac{n!}{1!} + \frac{n!}{2!} - \dots + (-1)^n \frac{n!}{n!}$$

$$= n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}\right]$$

Recall: Taylor series expansion of
$$e^x$$
:
 $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$.
Plug in $x = -1$ and truncate after *n* terms to see that
 $e^{-1} \approx \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^n \frac{1}{n!}\right]$

Conclusion: If *n* people go to a party and the hats are passed back randomly, the probability that no one gets his or her hat back at the party is $D_n/n!$, which is approximately $1/e \approx 37\%$.

Combinatorial proof involving D_n

Recall: The combinatorial interpretation of D_n is: "The number of ways to return n hats to n people so no one gets his/her own hat back"

Example. Prove the following recurrence relation for D_n combinatorially.

$$D_n = (n-1)(D_{n-2} + D_{n-1})$$

Recall: $S(n, k) = {n \atop k}$ is the number of partitions of the set [n] into exactly k parts

Recall: $S(n, k) = {n \\ k}$ is the number of partitions of the set [n] into exactly k parts

Recall: $S(n, k) = {n \atop k}$ is the number of partitions of the set [n] into exactly k parts, and k!S(n, k) is the number of onto functions $[n] \rightarrow [k]$.

Recall: $S(n, k) = {n \atop k}$ is the number of partitions of the set [n] into exactly k parts, and k!S(n, k) is the number of onto functions $[n] \rightarrow [k]$. *Question:* What is a formula for S(n, k)?

Recall: $S(n, k) = {n \atop k}$ is the number of partitions of the set [n] into exactly k parts, and k!S(n, k) is the number of onto functions $[n] \rightarrow [k]$. *Question:* What is a formula for S(n, k)? *Solution.* We will find the number of surjections from [n] to [k]. Use PIE with $\mathcal{U} =$ set of all functions from [n] to [k]. We will remove the "bad" functions where the range is not [k].

Recall: $S(n, k) = {n \atop k}$ is the number of partitions of the set [n] into exactly k parts, and k!S(n, k) is the number of onto functions $[n] \rightarrow [k]$. *Question:* What is a formula for S(n, k)? *Solution.* We will find the number of surjections from [n] to [k]. Use PIE with $\mathcal{U} =$ set of all functions from [n] to [k]. We will remove the "bad" functions where the range is not [k]. Define A_i be the set of functions $f : [n] \rightarrow [k]$ where i is not "hit".

Recall: $S(n, k) = {n \atop k}$ is the number of partitions of the set [n] into exactly k parts, and k!S(n, k) is the number of onto functions $[n] \rightarrow [k]$. *Question:* What is a formula for S(n, k)?

Solution. We will find the number of surjections from [n] to [k]. Use PIE with $\mathcal{U} =$ set of all functions from [n] to [k]. We will remove the "bad" functions where the range is not [k]. Define A_i be the set of functions $f : [n] \rightarrow [k]$ where i is not "hit". In words, $A_{i_1} \cap \cdots \cap A_{i_j}$ are functions where none of i_1 through i_j are elements of the image.

Recall: $S(n, k) = {n \atop k}$ is the number of partitions of the set [n] into exactly k parts, and k!S(n, k) is the number of onto functions $[n] \rightarrow [k]$. *Question:* What is a formula for S(n, k)?

Solution. We will find the number of surjections from [n] to [k]. Use PIE with $\mathcal{U} =$ set of all functions from [n] to [k]. We will remove the "bad" functions where the range is not [k].

Define A_i be the set of functions $f : [n] \to [k]$ where *i* is not "hit".

In words, $A_{i_1} \cap \cdots \cap A_{i_j}$ are functions where none of i_1 through i_j are elements of the image.

<u>We calculate</u>: $|\mathcal{U}| = k^n$, $|A_i| = (k-1)^n$, $|A_i \cap A_j| = (k-2)^n$ When intersecting j sets, $|A_{i_1} \cap \cdots \cap A_{i_j}| = (k-j)^n$.

Recall: $S(n,k) = {n \atop k}$ is the number of partitions of the set [n] into exactly k parts, and k!S(n,k) is the number of onto functions $[n] \rightarrow [k]$.

Question: What is a formula for S(n, k)?

Solution. We will find the number of surjections from [n] to [k]. Use PIE with $\mathcal{U} =$ set of all functions from [n] to [k]. We will remove the "bad" functions where the range is not [k]. Define A_i be the set of functions $f : [n] \rightarrow [k]$ where i is not "hit". In words, $A_{i_1} \cap \cdots \cap A_{i_j}$ are functions where none of i_1 through i_j are elements of the image.

<u>We calculate</u>: $|\mathcal{U}| = k^n$, $|A_i| = (k-1)^n$, $|A_i \cap A_j| = (k-2)^n$ When intersecting j sets, $|A_{i_1} \cap \cdots \cap A_{i_j}| = (k-j)^n$.

Therefore, $k!S(n,k) = \sum_{j=0}^{k} (-1)^{j} {k \choose j} (k-j)^{n}$; we conclude $S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{j} {k \choose j} (k-j)^{n}$

Recall: $S(n,k) = {n \atop k}$ is the number of partitions of the set [n] into exactly k parts, and k!S(n,k) is the number of onto functions $[n] \rightarrow [k]$.

Question: What is a formula for S(n, k)?

Solution. We will find the number of surjections from [n] to [k]. Use PIE with $\mathcal{U} =$ set of all functions from [n] to [k]. We will remove the "bad" functions where the range is not [k]. Define A_i be the set of functions $f : [n] \rightarrow [k]$ where i is not "hit". In words, $A_{i_1} \cap \cdots \cap A_{i_j}$ are functions where none of i_1 through i_j are elements of the image.

<u>We calculate</u>: $|\mathcal{U}| = k^n$, $|A_i| = (k-1)^n$, $|A_i \cap A_j| = (k-2)^n$ When intersecting j sets, $|A_{i_1} \cap \cdots \cap A_{i_j}| = (k-j)^n$.

Therefore, $k!S(n,k) = \sum_{j=0}^{k} (-1)^{j} {k \choose j} (k-j)^{n}$; we conclude $S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{j} {k \choose j} (k-j)^{n} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^{n}.$

$$B_{n} = \sum_{k \ge 0} {n \\ k} = \sum_{k \ge 0} \frac{1}{k!} \sum_{j=0}^{k} {k \choose j} (-1)^{k-j} j^{n}$$

(Careful: change of !!)

$$B_n = \sum_{k \ge 0} {n \\ k} = \sum_{k \ge 0} \frac{1}{k!} \sum_{j=0}^k \frac{1}{j!(k-j)!} (-1)^{k-j} j^n$$

$$B_n = \sum_{k \ge 0} {n \\ k} = \sum_{k \ge 0} \frac{1}{k!} \sum_{j=0}^k \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$
$$= \sum_{k \ge 0} \sum_{j=0}^k \frac{1}{j!(k-j)!} (-1)^{k-j} j^n$$

$$B_n = \sum_{k \ge 0} {n \\ k} = \sum_{k \ge 0} \frac{1}{k!} \sum_{j=0}^k \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$
$$= \sum_{k \ge 0} \sum_{j=0}^k \frac{1}{j!(k-j)!} (-1)^{k-j} j^n = \sum_{k \ge 0} \sum_{j=0}^k \frac{(-1)^{k-j} j^n}{(k-j)!} \frac{j^n}{j!}$$

$$B_n = \sum_{k \ge 0} {n \\ k} = \sum_{k \ge 0} \frac{1}{k!} \sum_{j=0}^k \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$

=
$$\sum_{k \ge 0} \sum_{j=0}^k \frac{1}{j!(k-j)!} (-1)^{k-j} j^n = \sum_{k \ge 0} \sum_{j=0}^k \frac{(-1)^{k-j} j^n}{(k-j)! j!} j^n$$

=
$$\sum_{j \ge 0} \sum_{k \ge j} \frac{(-1)^{k-j} j^n}{(k-j)! j!}$$

$$B_n = \sum_{k \ge 0} {n \\ k} = \sum_{k \ge 0} \frac{1}{k!} \sum_{j=0}^k \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$

=
$$\sum_{k \ge 0} \sum_{j=0}^k \frac{1}{j!(k-j)!} (-1)^{k-j} j^n = \sum_{k \ge 0} \sum_{j=0}^k \frac{(-1)^{k-j} j^n}{(k-j)!} \frac{j^n}{j!}$$

=
$$\sum_{j \ge 0} \sum_{k \ge j} \frac{(-1)^{k-j} j^n}{(k-j)!} = \sum_{j \ge 0} \frac{j^n}{j!} \sum_{k \ge j} \frac{(-1)^{k-j}}{(k-j)!}$$

$$B_n = \sum_{k \ge 0} {n \choose k} = \sum_{k \ge 0} \frac{1}{k!} \sum_{j=0}^k \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$

= $\sum_{k \ge 0} \sum_{j=0}^k \frac{1}{j!(k-j)!} (-1)^{k-j} j^n = \sum_{k \ge 0} \sum_{j=0}^k \frac{(-1)^{k-j} j^n}{(k-j)! j!} j^n$
= $\sum_{j \ge 0} \sum_{k \ge j} \frac{(-1)^{k-j} j^n}{(k-j)! j!} = \sum_{j \ge 0} \frac{j^n}{j!} \sum_{m \ge 0} \frac{(-1)^m}{(m)!}$

$$B_n = \sum_{k \ge 0} {n \\ k} = \sum_{k \ge 0} \frac{1}{k!} \sum_{j=0}^k \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$

=
$$\sum_{k \ge 0} \sum_{j=0}^k \frac{1}{j!(k-j)!} (-1)^{k-j} j^n = \sum_{k \ge 0} \sum_{j=0}^k \frac{(-1)^{k-j} j^n}{(k-j)!} \frac{j^n}{j!}$$

=
$$\sum_{j \ge 0} \sum_{k \ge j} \frac{(-1)^{k-j} j^n}{(k-j)!} \frac{j^n}{j!} = \sum_{j \ge 0} \frac{j^n}{j!} \sum_{m \ge 0} \frac{(-1)^m}{(m)!} = \sum_{j \ge 0} \frac{j^n}{j!} \frac{1}{e}$$

Recall: B_n is the number of partitions of [n] into any number of parts. Manipulate our expression from prev. page to find a formula.

$$B_{n} = \sum_{k \ge 0} {n \choose k} = \sum_{k \ge 0} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} (-1)^{k-j} j^{n}$$
$$= \sum_{k \ge 0} \sum_{j=0}^{k} \frac{1}{j!(k-j)!} (-1)^{k-j} j^{n} = \sum_{k \ge 0} \sum_{j=0}^{k} \frac{(-1)^{k-j} j^{n}}{(k-j)!} \frac{j^{n}}{j!}$$
$$= \sum_{j \ge 0} \sum_{k \ge j} \frac{(-1)^{k-j} j^{n}}{(k-j)!} \frac{j^{n}}{j!} = \sum_{j \ge 0} \frac{j^{n}}{j!} \sum_{m \ge 0} \frac{(-1)^{m}}{(m)!} = \sum_{j \ge 0} \frac{j^{n}}{j!} \frac{1}{e}$$

Theorem 4.3.3. For any n > 0, $B_n = \frac{1}{e} \sum_{j \ge 0} \frac{j^n}{j!}$.

Recall: B_n is the number of partitions of [n] into any number of parts. Manipulate our expression from prev. page to find a formula.

$$B_n = \sum_{k \ge 0} \left\{ {n \atop k} \right\} = \sum_{k \ge 0} \frac{1}{k!} \sum_{j=0}^k \frac{k!}{j!(k-j)!} (-1)^{k-j} j^n$$

= $\sum_{k \ge 0} \sum_{j=0}^k \frac{1}{j!(k-j)!} (-1)^{k-j} j^n = \sum_{k \ge 0} \sum_{j=0}^k \frac{(-1)^{k-j} j^n}{(k-j)! j!}$
= $\sum_{j \ge 0} \sum_{k \ge j} \frac{(-1)^{k-j} j^n}{(k-j)! j!} = \sum_{j \ge 0} \frac{j^n}{j!} \sum_{m \ge 0} \frac{(-1)^m}{(m)!} = \sum_{j \ge 0} \frac{j^n}{j! e} \frac{1}{e}$

Theorem 4.3.3. For any n > 0, $B_n = \frac{1}{e} \sum_{j \ge 0} \frac{j^n}{j!}$. For example, $B_5 = \frac{1}{e} \left(\frac{0^5}{0!} + \frac{1^5}{1!} + \frac{2^5}{2!} + \frac{3^5}{3!} + \frac{4^5}{4!} + \frac{5^5}{5!} + \cdots \right) = 52$.