mmooRREE COUNTING!

Question: In how many ways can we place k objects in n boxes?

mmooRREE COUNTING!

Question: In how many ways can we place k objects in n boxes?
Answer: It depends.

mmooRREE COUNTING!

Question: In how many ways can we place k objects in n boxes?
Answer: It depends.

- What do the objects look like?
- Do the objects all look the same?

mmooRREE COUNTING!

Question: In how many ways can we place k objects in n boxes?
Answer: It depends.

- What do the objects look like?
- Do the objects all look the same?
- What do the boxes look like?
- Do the boxes all look the same?

mmooRREE COUNTING!

Question: In how many ways can we place k objects in n boxes?
Answer: It depends.

- What do the objects look like?
- Do the objects all look the same?
- What do the boxes look like?
- Do the boxes all look the same?
- Are there any restrictions?
- Is there a size limit?
- Must there be an object in each box?

Counting distributions

Definition: A distribution is an assignment of objects to recipients.
Certain counting problems can be revisited in this framework:
$\left\{\begin{array}{c}\text { Five-letter passwords } \\ \text { on }\{A, B, C, D, E, F, G\}\end{array}\right\}$ correspond to $\left\{\begin{array}{c}\text { Distributions of } \\ \text { distinct objects } \\ \text { into } \quad \text { distinct boxes }\end{array}\right\}$

Counting distributions

Definition: A distribution is an assignment of objects to recipients.
Certain counting problems can be revisited in this framework:
$\left\{\begin{array}{c}\text { Five-letter passwords } \\ \text { on }\{A, B, C, D, E, F, G\}\end{array}\right\}$ correspond to $\left\{\begin{array}{c}\text { Distributions of } \\ \text { distinct objects } \\ \text { into } \quad \text { distinct boxes }\end{array}\right\}$

- What are candidates for objects, boxes?

Counting distributions

Definition: A distribution is an assignment of objects to recipients.
Certain counting problems can be revisited in this framework:
$\left\{\begin{array}{c}\text { Five-letter passwords } \\ \text { on }\{A, B, C, D, E, F, G\}\end{array}\right\}$ correspond to $\left\{\begin{array}{c}\text { Distributions of } \\ \text { distinct objects } \\ \text { into } \quad \text { distinct boxes }\end{array}\right\}$

- What are candidates for objects, boxes?
- View as a function

Counting distributions

Definition: A distribution is an assignment of objects to recipients.
Certain counting problems can be revisited in this framework:
$\left\{\begin{array}{c}\text { Five-letter passwords } \\ \text { on }\{A, B, C, D, E, F, G\}\end{array}\right\}$ correspond to $\left\{\begin{array}{c}\text { Distributions of } \\ \text { distinct objects } \\ \text { into___ distinct boxes }\end{array}\right\}$

- What are candidates for objects, boxes?
- View as a function
- View as a distribution

Counting distributions

Definition: A distribution is an assignment of objects to recipients.
Certain counting problems can be revisited in this framework:
$\left\{\begin{array}{c}\text { Five-letter passwords } \\ \text { on }\{A, B, C, D, E, F, G\} \\ \text { w/no repeated letters }\end{array}\right\}$ correspond to $\left\{\begin{array}{c}\text { Distributions of } \\ \text { distinct objects } \\ \text { into } \quad \text { distinct boxes } \\ \text { satisfying }\end{array}\right\}$

- What are candidates for objects, boxes?
- View as a function
- View as a distribution
- Find the restriction

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct				
identical	distinct				
distinct	identical				
identical	identical				

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct				
identical	distinct				
distinct	identical				
identical	identical				

Where do our known answers fit into the table? (Use function view)

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$		
identical	distinct				
distinct	identical				
identical	identical				

Where do our known answers fit into the table? (Use function view)

- n^{k} : Objects distinct, Boxes distinct, no restriction.
- $(n)_{k}$: Objects distinct, Boxes distinct, ≤ 1 object per box.

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$		
identical	distinct				
distinct	identical				
identical	identical				

Where do our known answers fit into the table? (Use function view)

- n^{k} : Objects distinct, Boxes distinct, no restriction.
- $(n)_{k}$: Objects distinct, Boxes distinct, ≤ 1 object per box.
- n ! : Permutations.

What about when $n \neq k$?

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$		$n!$ or 0
identical	distinct				
distinct	identical				
identical	identical				

Where do our known answers fit into the table? (Use function view)

- n^{k} : Objects distinct, Boxes distinct, no restriction.
- $(n)_{k}$: Objects distinct, Boxes distinct, ≤ 1 object per box.
- n ! : Permutations.

What about when $n \neq k$?

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$		$n!$ or 0
identical	distinct				
distinct	identical				
identical	identical				

Where do our known answers fit into the table? (Use function view)

- n^{k} : Objects distinct, Boxes distinct, no restriction.
- $(n)_{k}$: Objects distinct, Boxes distinct, ≤ 1 object per box.
- n !: Permutations.

What about when $n \neq k$?

- $\binom{n}{k}$: Objects \qquad , Boxes \qquad , \qquad .
- ($\left.\binom{n}{k}\right)$: Objects \qquad , Boxes \qquad , \qquad .

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$		$n!$ or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$		
distinct	identical				
identical	identical				

Where do our known answers fit into the table? (Use function view)

- n^{k} : Objects distinct, Boxes distinct, no restriction.
- $(n)_{k}$: Objects distinct, Boxes distinct, ≤ 1 object per box.
- n !: Permutations.

What about when $n \neq k$?

- $\binom{n}{k}$: Objects \qquad , Boxes \qquad , \qquad .
- ($\left.\binom{n}{k}\right)$: Objects \qquad , Boxes \qquad , \qquad .

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$		$n!$ or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$		
distinct	identical				
identical	identical				

We can also fill in these answers:

- Objects identical, Boxes distinct, ≥ 1 object per box:
- Objects identical, Boxes distinct, $=1$ object per box:

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$		$n!$ or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical				
identical	identical				

We can also fill in these answers:

- Objects identical, Boxes distinct, ≥ 1 object per box:
- Objects identical, Boxes distinct, $=1$ object per box:

Distinct objects in indistinguishable boxes

When placing k distinguishable objects into n indistinguishable boxes, what matters?

Distinct objects in indistinguishable boxes

When placing k distinguishable objects into n indistinguishable boxes, what matters?

- Each object needs to be in some box.
- No object is in two boxes.

We have rediscovered

Distinct objects in indistinguishable boxes

When placing k distinguishable objects into n indistinguishable boxes, what matters?

- Each object needs to be in some box.
- No object is in two boxes.

We have rediscovered
So ask "How many set partitions are there of a set with k objects?"
Or even, "How many set partitions are there of k objects into n parts?"

Stirling numbers

The Stirling number of the second kind counts the number of ways to partition a set of k elements into i non-empty subsets. Notation: $S(k, i)$ or $\left\{\begin{array}{l}k \\ i\end{array}\right\} . \leftarrow$ Careful about this order!

Stirling numbers

The Stirling number of the second kind counts the number of ways to partition a set of k elements into i non-empty subsets. Notation: $S(k, i)$ or $\left\{\begin{array}{l}k \\ i\end{array}\right\} . \leftarrow$ Careful about this order!

k	$\left\{\begin{array}{l}k \\ 0\end{array}\right\}\left\{\begin{array}{l}k \\ 1\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 2\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 3\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 4\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 5\end{array}\right\}$		
0	1						
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	
7	1						1

Stirling numbers

The Stirling number of the second kind counts the number of ways to partition a set of k elements into i non-empty subsets. Notation: $S(k, i)$ or $\left\{\begin{array}{l}k \\ i\end{array}\right\} . \leftarrow$ Careful about this order!

k		k $\begin{aligned} & \text { 1 }\end{aligned}$	$\left\{\begin{array}{l}k \\ 2\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 3\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 4\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 5\end{array}\right\}$		
0	1							
1		1						
2		1	1					
3		1	3	1				
4		1	7	6	1			
5		1	15	25	10	1		
6		1	31	90	65	15	1	
7		1						1

In Stirling's triangle:

$$
\begin{aligned}
& S(k, 1)=S(k, k)=1 . \\
& S(k, 2)=2^{k-1}-1 . \\
& S(k, k-1)=\binom{k}{2} .
\end{aligned}
$$

Later: Formula for $S(k, i)$.

Stirling numbers

The Stirling number of the second kind counts the number of ways to partition a set of k elements into i non-empty subsets.
Notation: $S(k, i)$ or $\left\{\begin{array}{l}k \\ i\end{array}\right\} . \leftarrow$ Careful about this order!

k	$\left\{\begin{array}{l}k \\ 0\end{array}\right\}\left\{\begin{array}{l}k \\ 1\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 2\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 3\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 4\end{array}\right\}$			
0	1						
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	
7	1						1

In Stirling's triangle:

$$
\begin{aligned}
& S(k, 1)=S(k, k)=1 . \\
& S(k, 2)=2^{k-1}-1 . \\
& S(k, k-1)=\binom{k}{2} .
\end{aligned}
$$

Later: Formula for $S(k, i)$.
To fill in the table, find a recurrence for $S(k, i)$:

Stirling numbers

The Stirling number of the second kind counts the number of ways to partition a set of k elements into i non-empty subsets. Notation: $S(k, i)$ or $\left\{\begin{array}{l}k \\ i\end{array}\right\} . \leftarrow$ Careful about this order!

k	\{ $\left\{\begin{array}{l}k \\ 0\end{array}\right\}\left\{\begin{array}{l}k \\ 1\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 2\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 3\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 4\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 5\end{array}\right\}$		
0	1						
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	
7	1						1

In Stirling's triangle:

$$
\begin{aligned}
& S(k, 1)=S(k, k)=1 . \\
& S(k, 2)=2^{k-1}-1 . \\
& S(k, k-1)=\binom{k}{2} .
\end{aligned}
$$

Later: Formula for $S(k, i)$.
To fill in the table, find a recurrence for $S(k, i)$:

Ask: In how many ways can we place k objects into i boxes?
We'll condition on the placement of element $\# i$:

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$		$n!$ or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical				
identical	identical				

$S(k, n)$ counts ways to place k distinct obj. into n identical boxes.

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$		$n!$ or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\left.\binom{n}{k-n}\right)$	1 or 0
distinct	identical			$S(k, n)$	
identical	identical				

$S(k, n)$ counts ways to place k distinct obj. into n identical boxes.

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$		$n!$ or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\left.\binom{n}{k-n}\right)$	1 or 0
distinct	identical			$S(k, n)$	
identical	identical				

$S(k, n)$ counts ways to place k distinct obj. into n identical boxes.
What if we then label the boxes?

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$	$n!S(k, n)$	$n!$ or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical			$S(k, n)$	
identical	identical				

$S(k, n)$ counts ways to place k distinct obj. into n identical boxes.
What if we then label the boxes?
(Note that here we have counted onto functions $[k] \rightarrow[n]$.)

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$	$n!S(k, n)$	$n!$ or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\left.\binom{n}{k-n}\right)$	1 or 0
distinct	identical			$S(k, n)$	
identical	identical				

$S(k, n)$ counts ways to place k distinct obj. into n identical boxes.
What if we then label the boxes?
(Note that here we have counted onto functions $[k] \rightarrow[n]$.)
How many ways to distribute distinct objects into identical boxes:

- If there is exactly one item in each box?

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$	$n!S(k, n)$	$n!$ or 0
identical	distinct	$\left.\binom{n}{k}\right)$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical			$S(k, n)$	1 or 0
identical	identical				

$S(k, n)$ counts ways to place k distinct obj. into n identical boxes.
What if we then label the boxes?
(Note that here we have counted onto functions $[k] \rightarrow[n]$.)
How many ways to distribute distinct objects into identical boxes:

- If there is exactly one item in each box?
- If there is at most one item in each box?

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$	$n!S(k, n)$	$n!$ or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical		1 or 0	$S(k, n)$	1 or 0
identical	identical				

$S(k, n)$ counts ways to place k distinct obj. into n identical boxes.
What if we then label the boxes?
(Note that here we have counted onto functions $[k] \rightarrow[n]$.)
How many ways to distribute distinct objects into identical boxes:

- If there is exactly one item in each box?
- If there is at most one item in each box?
- What about with no restrictions?

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$	$n!S(k, n)$	$n!$ or 0
identical	distinct	$\left.\binom{n}{k}\right)$	$\binom{n}{k}$	$\left.\binom{n}{k-n}\right)$	1 or 0
distinct	identical	$\sum S(k, i)$	1 or 0	$S(k, n)$	1 or 0
identical	identical				

$S(k, n)$ counts ways to place k distinct obj. into n identical boxes.
What if we then label the boxes?
(Note that here we have counted onto functions $[k] \rightarrow[n]$.)
How many ways to distribute distinct objects into identical boxes:

- If there is exactly one item in each box?
- If there is at most one item in each box?
- What about with no restrictions?

Bell numbers

Definition: The Bell number B_{k} is the number of partitions of a set with k elements, into any number of non-empty parts.

We have $B_{k}=S(k, 0)+S(k, 1)+S(k, 2)+\cdots+S(k, k)$.

Bell numbers

Definition: The Bell number B_{k} is the number of partitions of a set with k elements, into any number of non-empty parts.
We have $B_{k}=S(k, 0)+S(k, 1)+S(k, 2)+\cdots+S(k, k)$.

$$
\begin{array}{cccccccccc}
B_{0} & B_{1} & B_{2} & B_{3} & B_{4} & B_{5} & B_{6} & B_{7} & B_{8} & B_{9} \\
1 & 1 & 2 & 5 & 15 & 52 & 203 & 877 & 4140 & 21147
\end{array}
$$

Bell numbers

Definition: The Bell number B_{k} is the number of partitions of a set with k elements, into any number of non-empty parts.

We have $B_{k}=S(k, 0)+S(k, 1)+S(k, 2)+\cdots+S(k, k)$.

$$
\begin{array}{cccccccccc}
B_{0} & B_{1} & B_{2} & B_{3} & B_{4} & B_{5} & B_{6} & B_{7} & B_{8} & B_{9} \\
1 & 1 & 2 & 5 & 15 & 52 & 203 & 877 & 4140 & 21147
\end{array}
$$

Theorem 2.3.3. The Bell numbers satisfy a recurrence:

$$
B_{k}=\binom{k-1}{0} B_{0}+\binom{k-1}{1} B_{1}+\cdots+\binom{k-1}{k-1} B_{k-1} .
$$

Bell numbers

Definition: The Bell number B_{k} is the number of partitions of a set with k elements, into any number of non-empty parts.

We have $B_{k}=S(k, 0)+S(k, 1)+S(k, 2)+\cdots+S(k, k)$.

$$
\begin{array}{cccccccccc}
B_{0} & B_{1} & B_{2} & B_{3} & B_{4} & B_{5} & B_{6} & B_{7} & B_{8} & B_{9} \\
1 & 1 & 2 & 5 & 15 & 52 & 203 & 877 & 4140 & 21147
\end{array}
$$

Theorem 2.3.3. The Bell numbers satisfy a recurrence:

$$
B_{k}=\binom{k-1}{0} B_{0}+\binom{k-1}{1} B_{1}+\cdots+\binom{k-1}{k-1} B_{k-1} .
$$

Proof: How many partitions of $\{1, \ldots, k\}$ are there?
LHS: B_{k}, obviously.
RHS:

Bell numbers

Definition: The Bell number B_{k} is the number of partitions of a set with k elements, into any number of non-empty parts.

We have $B_{k}=S(k, 0)+S(k, 1)+S(k, 2)+\cdots+S(k, k)$.

$$
\begin{array}{cccccccccc}
B_{0} & B_{1} & B_{2} & B_{3} & B_{4} & B_{5} & B_{6} & B_{7} & B_{8} & B_{9} \\
1 & 1 & 2 & 5 & 15 & 52 & 203 & 877 & 4140 & 21147
\end{array}
$$

Theorem 2.3.3. The Bell numbers satisfy a recurrence:

$$
B_{k}=\binom{k-1}{0} B_{0}+\binom{k-1}{1} B_{1}+\cdots+\binom{k-1}{k-1} B_{k-1} .
$$

Proof: How many partitions of $\{1, \ldots, k\}$ are there?
LHS: B_{k}, obviously.
RHS: Condition on the box containing the last element k : How many partitions of [k] contain i elements in the box with k ?

Indistinguishable objects in indistinguishable boxes

When placing k indistinguishable objects into n indistinguishable boxes, what matters?

Indistinguishable objects in indistinguishable boxes

When placing k indistinguishable objects into n indistinguishable boxes, what matters?

- We are partitioning the integer k instead of the set $[k]$.

Example. What are the partitions of 6 ?

Indistinguishable objects in indistinguishable boxes

When placing k indistinguishable objects into n indistinguishable boxes, what matters?

- We are partitioning the integer k instead of the set $[k]$.

Example. What are the partitions of 6 ?

Definition: $P(k, i)$ is the number of partitions of k into i parts.
Example. We saw $P(6,1)=1, P(6,2)=3, P(6,3)=3$, $P(6,4)=2, P(6,5)=1$, and $P(6,6)=1$.

Indistinguishable objects in indistinguishable boxes

When placing k indistinguishable objects into n indistinguishable boxes, what matters?

- We are partitioning the integer k instead of the set $[k]$.

Example. What are the partitions of 6 ?

Definition: $P(k, i)$ is the number of partitions of k into i parts.
Example. We saw $P(6,1)=1, P(6,2)=3, P(6,3)=3$, $P(6,4)=2, P(6,5)=1$, and $P(6,6)=1$.

Definition: $P(k)$ is the number of partitions of k into any number of parts.
Example. $P(6)=1+3+3+2+1+1=11$.

THE CHART, COMPLETED

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$	$n!S(k, n)$	$n!$ or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical	$\sum S(k, i)$	1 or 0	$S(k, n)$	1 or 0
identical	identical				

$P(k, n)$ counts ways to place k identical obj. into n identical boxes.

THE CHART, COMPLETED

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$	$n!S(k, n)$	$n!$ or 0
identical	distinct	$\left.\binom{n}{k}\right)$	$\binom{n}{k}$	$\left.\binom{n}{k-n}\right)$	1 or 0
distinct	identical	$\sum S(k, i)$	1 or 0	$S(k, n)$	1 or 0
identical	identical			$P(k, n)$	

$P(k, n)$ counts ways to place k identical obj. into n identical boxes.

THE CHART, COMPLETED

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$	$n!S(k, n)$	$n!$ or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical	$\sum S(k, i)$	1 or 0	$S(k, n)$	1 or 0
identical	identical			$P(k, n)$	

$P(k, n)$ counts ways to place k identical obj. into n identical boxes.
How many ways to distribute identical objects into identical boxes:

- If there is exactly one item in each box?

THE CHART, COMPLETED

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$	$n!S(k, n)$	$n!$ or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical	$\sum S(k, i)$	1 or 0	$S(k, n)$	1 or 0
identical	identical			$P(k, n)$	1 or 0

$P(k, n)$ counts ways to place k identical obj. into n identical boxes.
How many ways to distribute identical objects into identical boxes:

- If there is exactly one item in each box?
- If there is at most one item in each box?

THE CHART, COMPLETED

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$	$n!S(k, n)$	$n!$ or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical	$\sum S(k, i)$	1 or 0	$S(k, n)$	1 or 0
identical	identical		1 or 0	$P(k, n)$	1 or 0

$P(k, n)$ counts ways to place k identical obj. into n identical boxes.
How many ways to distribute identical objects into identical boxes:

- If there is exactly one item in each box?
- If there is at most one item in each box?
- What about with no restrictions?

THE CHART, COMPLETED

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$	$n!S(k, n)$	$n!$ or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical	$\sum S(k, i)$	1 or 0	$S(k, n)$	1 or 0
identical	identical	$\sum P(k, i)$	1 or 0	$P(k, n)$	1 or 0

$P(k, n)$ counts ways to place k identical obj. into n identical boxes.
How many ways to distribute identical objects into identical boxes:

- If there is exactly one item in each box?
- If there is at most one item in each box?
- What about with no restrictions?
(This is the \# of integer partitions of k into at most n parts.)

