What is a Combinatorial Proof?

Definition: A combinatorial interpretation of a numerical quantity is a set of combinatorial objects that is counted by the quantity.

What is a Combinatorial Proof?

Definition: A combinatorial interpretation of a numerical quantity is a set of combinatorial objects that is counted by the quantity.
Example. We can choose k objects out of n total objects in $\binom{n}{k}$ ways.

What is a Combinatorial Proof?

Definition: A combinatorial interpretation of a numerical quantity is a set of combinatorial objects that is counted by the quantity. Example. We can choose k objects out of n total objects in $\binom{n}{k}$ ways. Use this fact "backwards" by interpreting an occurrence of $\binom{n}{k}$ as the number of ways to choose k objects out of n.

What is a Combinatorial Proof?

Definition: A combinatorial interpretation of a numerical quantity is a set of combinatorial objects that is counted by the quantity.
Example. We can choose k objects out of n total objects in $\binom{n}{k}$ ways. Use this fact "backwards" by interpreting an occurrence of $\binom{n}{k}$ as the number of ways to choose k objects out of n.

This leads to my favorite kind of proof:
Definition: A combinatorial proof of an identity $X=Y$ is a proof by counting (!). You find a set of objects that can be interpreted as a combinatorial interpretation of both the left hand side (LHS) and the right hand side (RHS) of the equation. As both sides of the equation count the same set of objects, they must be equal!

What is a Combinatorial Proof?

Definition: A combinatorial interpretation of a numerical quantity is a set of combinatorial objects that is counted by the quantity.
Example. We can choose k objects out of n total objects in $\binom{n}{k}$ ways. Use this fact "backwards" by interpreting an occurrence of $\binom{n}{k}$ as the number of ways to choose k objects out of n.

This leads to my favorite kind of proof:
Definition: A combinatorial proof of an identity $X=Y$ is a proof by counting (!). You find a set of objects that can be interpreted as a combinatorial interpretation of both the left hand side (LHS) and the right hand side (RHS) of the equation. As both sides of the equation count the same set of objects, they must be equal!

- It is important to get the set of objects right.
- To do this, you must ask a good question: "In how many ways..."

A Simple Combinatorial Proof

Example. Prove Equation (2.2): For $0 \leq k \leq n,\binom{n}{k}=\binom{n}{n-k}$. (We already know a bijective proof of this fact.)

A Simple Combinatorial Proof

Example. Prove Equation (2.2): For $0 \leq k \leq n,\binom{n}{k}=\binom{n}{n-k}$. (We already know a bijective proof of this fact.)

Analytic Proof: $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n!}{(n-k)!(n-(n-k))!}=\binom{n}{n-k}$

A Simple Combinatorial Proof

Example. Prove Equation (2.2): For $0 \leq k \leq n,\binom{n}{k}=\binom{n}{n-k}$. (We already know a bijective proof of this fact.)
Analytic Proof: $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n!}{(n-k)!(n-(n-k))!}=\binom{n}{n-k}$
Combinatorial Proof:
Question: In how many ways can we adopt k of n cats available for adoption at the animal shelter?

A Simple Combinatorial Proof

Example. Prove Equation (2.2): For $0 \leq k \leq n,\binom{n}{k}=\binom{n}{n-k}$. (We already know a bijective proof of this fact.)

Analytic Proof: $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n!}{(n-k)!(n-(n-k))!}=\binom{n}{n-k}$
Combinatorial Proof:
Question: In how many ways can we adopt k of n cats available for adoption at the animal shelter?
Answer 1: Choose k of the n cats to adopt in $\binom{n}{k}$ ways.
Answer 2: Choose $n-k$ of the n cats to NOT adopt in $\binom{n}{n-k}$ ways.

A Simple Combinatorial Proof

Example. Prove Equation (2.2): For $0 \leq k \leq n,\binom{n}{k}=\binom{n}{n-k}$. (We already know a bijective proof of this fact.)

Analytic Proof: $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n!}{(n-k)!(n-(n-k))!}=\binom{n}{n-k}$
Combinatorial Proof:
Question: In how many ways can we adopt k of n cats available for adoption at the animal shelter?
Answer 1: Choose k of the n cats to adopt in $\binom{n}{k}$ ways. Answer 2: Choose $n-k$ of the n cats to NOT adopt in $\binom{n}{n-k}$ ways.
Because the two quantities count the same set of objects in two different ways, the two answers are equal.

Another Simple Combinatorial Proof

Example. Prove Equation (2.4): $k\binom{n}{k}=n\binom{n-1}{k-1}$.
Analytic Proof:

Another Simple Combinatorial Proof

Example. Prove Equation (2.4): $k\binom{n}{k}=n\binom{n-1}{k-1}$.
Analytic Proof:

Combinatorial Proof:

Question: In how many ways can we choose from n club members a committee of k members with a chairperson?
Answer 1:

Answer 2:

Because the two quantities count the same set of objects in two different ways, the two answers are equal.

Pascal's Identity

Example. Prove Theorem 2.2.1: $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$.
Combinatorial Proof:
Question: In how many ways can we choose k flavors of ice cream if n different choices are available?

Answer 1:

Answer 2:

Because the two quantities count the same set of objects in two different ways, the two answers are equal.

Summing Binomial Coefficients

Example. Prove Equation (2.3): $\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=2^{n}$.
Analytic Proof: ???
Combinatorial Proof:
Question: How many subsets of $\{1,2, \ldots, n\}$ are there?
Answer 1: Condition on how many elements are in a subset.

Answer 2:

Because the two quantities count the same set of objects in two different ways, the two answers are equal.

Tiling a board with dominos and squares

Question: How many ways are there to tile a $1 \times n$ board using only dominoes and squares?

Definition: Let $f_{n}=\#$ of ways to tile a $2 \times n$ board.
$f_{0}=1$
$f_{1}=$
$f_{2}=$
$f_{3}=$
$f_{4}=$

Tiling a board with dominos and squares

Question: How many ways are there to tile a $1 \times n$ board using only dominoes and squares?

Definition: Let $f_{n}=\#$ of ways to tile a $2 \times n$ board.
$f_{0}=1$
$f_{1}=1$
$f_{2}=$
$f_{3}=$
$f_{4}=$

Tiling a board with dominos and squares

Question: How many ways are there to tile a $1 \times n$ board using only dominoes and squares?

Definition: Let $f_{n}=\#$ of ways to tile a $2 \times n$ board.
$f_{0}=1$
$f_{1}=1$
$f_{2}=2$
$f_{3}=$
$f_{4}=$

Tiling a board with dominos and squares

Question: How many ways are there to tile a $1 \times n$ board using only dominoes and squares?

Definition: Let $f_{n}=\#$ of ways to tile a $2 \times n$ board.
$f_{0}=1$
$f_{1}=1$
$f_{2}=2$
$f_{3}=3$
$f_{4}=$

Tiling a board with dominos and squares

Question: How many ways are there to tile a $1 \times n$ board using only dominoes and squares?

Definition: Let $f_{n}=\#$ of ways to tile a $2 \times n$ board.
$f_{0}=1$
$f_{1}=1$
$f_{2}=2$
$f_{3}=3$
$f_{4}=5$

Tiling a board with dominos and squares

Question: How many ways are there to tile a $1 \times n$ board using only dominoes and squares?

Definition: Let $f_{n}=\#$ of ways to tile a $2 \times n$ board.
$f_{0}=1$
$f_{1}=1$
$f_{2}=2$
$f_{3}=3$
$f_{4}=5$

Fibonacci!

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$

There are f_{n} tilings of a $1 \times n$ board
Every tiling ends in either:

- a square

- a domino

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$

There are f_{n} tilings of a $1 \times n$ board
Every tiling ends in either:

- a square

- How many?
- a domino

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$

There are f_{n} tilings of a $1 \times n$ board
Every tiling ends in either:

- a square

- How many? Fill the initial $1 \times(n-1)$ board in f_{n-1} ways.
- a domino

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$

There are f_{n} tilings of a $1 \times n$ board
Every tiling ends in either:

- a square

- How many? Fill the initial $1 \times(n-1)$ board in f_{n-1} ways.
- a domino

- How many?

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$

There are f_{n} tilings of a $1 \times n$ board
Every tiling ends in either:

- a square

- How many? Fill the initial $1 \times(n-1)$ board in f_{n-1} ways.
- a domino

- How many? Fill the initial $1 \times(n-2)$ board in f_{n-2} ways.

Total: $f_{n-1}+f_{n-2}$

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$

There are f_{n} tilings of a $1 \times n$ board
Every tiling ends in either:

- a square

- How many? Fill the initial $1 \times(n-1)$ board in f_{n-1} ways.
- a domino

- How many? Fill the initial $1 \times(n-2)$ board in f_{n-2} ways.

Total: $f_{n-1}+f_{n-2}$

Fibonacci identities

We have a new definition for Fibonacci:
$f_{n}=$ the number of square-domino tilings of a $1 \times n$ board.

Fibonacci identities

We have a new definition for Fibonacci:
$f_{n}=$ the number of square-domino tilings of a $1 \times n$ board.

This combinatorial interpretation of the Fibonacci numbers provides a framework to prove identities.

- Did you know that $f_{2 n}=\left(f_{n}\right)^{2}+\left(f_{n-1}\right)^{2}$?

Fibonacci identities

We have a new definition for Fibonacci:
$f_{n}=$ the number of square-domino tilings of a $1 \times n$ board.

This combinatorial interpretation of the Fibonacci numbers provides a framework to prove identities.

- Did you know that $f_{2 n}=\left(f_{n}\right)^{2}+\left(f_{n-1}\right)^{2}$?
$\begin{array}{cccccccccccccc}f_{1} & f_{2} & f_{3} & f_{4} & f_{5} & f_{6} & f_{7} & f_{8} & f_{9} & f_{10} & f_{11} & f_{12} & f_{13} & f_{14} \\ 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144 & 233 & 377 & 610\end{array}$

$$
\begin{aligned}
& f_{8}=f_{4}^{2}+f_{3}^{2} \\
& 34=25+9
\end{aligned}
$$

Fibonacci identities

We have a new definition for Fibonacci:
$f_{n}=$ the number of square-domino tilings of a $1 \times n$ board.

This combinatorial interpretation of the Fibonacci numbers provides a framework to prove identities.

- Did you know that $f_{2 n}=\left(f_{n}\right)^{2}+\left(f_{n-1}\right)^{2}$?
$\begin{array}{cccccccccccccc}f_{1} & f_{2} & f_{3} & f_{4} & f_{5} & f_{6} & f_{7} & f_{8} & f_{9} & f_{10} & f_{11} & f_{12} & f_{13} & f_{14} \\ 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144 & 233 & 377 & 610\end{array}$

$$
\begin{gathered}
f_{14}=f_{7}^{2}+f_{6}^{2} \\
610=441+169
\end{gathered}
$$

Proof that $=\quad+\left(f_{n-1}\right)^{2}$

Proof. How many ways are there to tile a $1 \times(2 n)$ board?

Proof that $=\quad+\left(f_{n-1}\right)^{2}$

Proof. How many ways are there to tile a $1 \times(2 n)$ board?
Answer 1. Duh, $f_{2 n}$.

Proof that $=\quad+\left(f_{n-1}\right)^{2}$

Proof. How many ways are there to tile a $1 \times(2 n)$ board?
Answer 1. Duh, $f_{2 n}$.
Answer 2. Ask whether there is a break in the middle of the tiling:
Either there is...
Or there isn't...

Proof that $=\quad+\left(f_{n-1}\right)^{2}$

Proof. How many ways are there to tile a $1 \times(2 n)$ board?
Answer 1. Duh, $f_{2 n}$.
Answer 2. Ask whether there is a break in the middle of the tiling:
Either there is...
Or there isn't...

Proof that $=\quad+\left(f_{n-1}\right)^{2}$

Proof. How many ways are there to tile a $1 \times(2 n)$ board?
Answer 1. Duh, $f_{2 n}$.
Answer 2. Ask whether there is a break in the middle of the tiling:

Proof that $=\quad+\left(f_{n-1}\right)^{2}$

Proof. How many ways are there to tile a $1 \times(2 n)$ board?
Answer 1. Duh, f2n.
Answer 2. Ask whether there is a break in the middle of the tiling:

For a total of $\left(f_{n}\right)^{2}+\left(f_{n-1}\right)^{2}$ tilings.

Proof that $=\quad+\left(f_{n-1}\right)^{2}$

Proof. How many ways are there to tile a $1 \times(2 n)$ board?
Answer 1. Duh, $f_{2 n}$.
Answer 2. Ask whether there is a break in the middle of the tiling:

For a total of $\left(f_{n}\right)^{2}+\left(f_{n-1}\right)^{2}$ tilings.
We counted $f_{2 n}$ in two different ways, so they must be equal.

Proof that $=\quad+\left(f_{n-1}\right)^{2}$

Proof. How many ways are there to tile a $1 \times(2 n)$ board?
Answer 1. Duh, $f_{2 n}$.
Answer 2. Ask whether there is a break in the middle of the tiling:

For a total of $\left(f_{n}\right)^{2}+\left(f_{n-1}\right)^{2}$ tilings.
We counted $f_{2 n}$ in two different ways, so they must be equal.

Further reading:

Arthur T. Benjamin and Jennifer J. Quinn
Proofs that Really Count, MAA Press, 2003.

