Pascal's identity gives us the recurrence $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k.

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1		1					
3	1			1				
4	1				1			
5	1					1		
1 2 3 4 5 6	1						1	
7	1							1

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
0 1 2 3 4 5 6	1			1				
4	1				1			
5	1					1		
6	1						1	
7	1							1

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
1 2 3 4 5 6	1	3	3	1				
4	1				1			
5	1					1		
6	1						1	
7	1							1

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
0 1 2 3 4 5 6	1					1		
6	1						1	
7	1							1

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2 3	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Pascal's identity gives us the recurrence $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0} = 1$ and $\binom{n}{n} = 1$ for all n.

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5		10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Seq's in Pascal's triangle: $1, 2, 3, 4, 5, \dots$ $\binom{n}{1}$ $(a_n = n)$ $1, 3, 6, 10, 15, \dots$ $\binom{n}{2}$ triangular $1, 4, 10, 20, 35, \dots$ $\binom{n}{3}$ tetrahedral

1, 2, 6, 20, 70, . . . centr. binom.

Pascal's identity gives us the recurrence $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0} = 1$ and $\binom{n}{n} = 1$ for all n.

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	1 4 10 20	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Seq's in Pascal's triangle:

1, 2, 3, 4, 5, ...
$$\binom{n}{1}$$

($a_n = n$) A000027
1, 3, 6, 10, 15, ... $\binom{n}{2}$
triangular A000217
1, 4, 10, 20, 35, ... $\binom{n}{3}$
tetrahedral A000292
1, 2, 6, 20, 70, ... $\binom{2n}{n}$
centr. binom. A000984

Online Encyclopedia of Integer Sequences:

http://oeis.org/

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n-1}xy^{n-1} + y^n.$$

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n-1}xy^{n-1} + y^n.$$

Rewrite in summation notation!

Determine the generic term $\binom{n}{k}x$ y and the bounds on k

$$(x+y)^n=\sum$$

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n-1}xy^{n-1} + y^n.$$

Rewrite in summation notation!

Determine the generic term $\binom{n}{k}x$ y and the bounds on k

$$(x+y)^n=\sum$$

▶ The entries of Pascal's triangle are the coefficients of terms in the expansion of $(x + y)^n$.

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n-1}xy^{n-1} + y^n.$$

Rewrite in summation notation!

Determine the generic term $\binom{n}{k}x$ y and the bounds on k

$$(x+y)^n=\sum$$

▶ The entries of Pascal's triangle are the coefficients of terms in the expansion of $(x + y)^n$.

Proof. In the expansion of $(x+y)(x+y)\cdots(x+y)$, in how many ways can a term have the form $x^{n-k}y^k$?

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n-1}xy^{n-1} + y^n.$$

Rewrite in summation notation!

Determine the generic term $\binom{n}{k}x$ y and the bounds on k

$$(x+y)^n=\sum$$

▶ The entries of Pascal's triangle are the coefficients of terms in the expansion of $(x + y)^n$.

Proof. In the expansion of $(x+y)(x+y)\cdots(x+y)$, in how many ways can a term have the form $x^{n-k}y^k$?

From the *n* factors (x + y), you must choose a "y" exactly k times. Therefore, $\binom{n}{k}$ ways. We recover the desired equation.