Pascal's triangle

Pascal's identity gives us the recurrence $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0} = 1$ and $\binom{n}{n} = 1$ for all n.

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Seq's in Pascal's triangle: 1, 2, 3, 4, 5, ... $\binom{n}{1}$ $(a_n = n)$ A000027 1, 3, 6, 10, 15, ... $\binom{n}{2}$ triangular A000217 1, 4, 10, 20, 35, ... $\binom{n}{3}$ tetrahedral A000292 1, 2, 6, 20, 70, ... $\binom{2n}{n}$ centr. binom. A000984

Online Encyclopedia of Integer Sequences: http://oeis.org/

Binomial Theorem

Theorem 2.2.2. Let *n* be a positive integer. For all *x* and *y*,

$$(x+y)^n = x^n + {n \choose 1} x^{n-1} y + \dots + {n \choose n-1} x y^{n-1} + y^n.$$

Rewrite in summation notation!

Determine the generic term $\begin{bmatrix} n \\ k \end{bmatrix} x \ y \ \end{bmatrix}$ and the bounds on k

$$(x+y)^n=\sum$$

► The entries of Pascal's triangle are the coefficients of terms in the expansion of $(x + y)^n$.

Proof. In the expansion of $(x + y)(x + y) \cdots (x + y)$, in how many ways can a term have the form $x^{n-k}y^k$?

From the *n* factors (x + y), you must choose a "y" exactly *k* times. Therefore, $\binom{n}{k}$ ways. We recover the desired equation.