Pascal's triangle

Pascal's identity gives us the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0}=1$ and $\binom{n}{n}=1$ for all n.

$n \backslash^{k}$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Seq's in Pascal's triangle:

$$
\begin{array}{cc}
1,2,3,4,5, \ldots & \binom{n}{1} \\
\left(a_{n}=n\right) & \\
1,30,6,10,15, \ldots & \binom{n}{2} \\
\text { triangular } & \text { A000217 } \\
1,4,10,20,35, \ldots & \binom{n}{3} \\
\text { tetrahedral } & \text { A000292 } \\
1,2,6,20,70, \ldots & \binom{2 n}{n} \\
\text { centr. binom. } & \text { A000984 }
\end{array}
$$

Online Encyclopedia of Integer Sequences:
http://oeis.org/

Binomial Theorem

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$
(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+y^{n} .
$$

Rewrite in summation notation!
Determine the generic term $\left[\begin{array}{l}n \\ k\end{array}\right) x$ y \quad] and the bounds on k

$$
(x+y)^{n}=\sum
$$

- The entries of Pascal's triangle are the coefficients of terms in the expansion of $(x+y)^{n}$.

Proof. In the expansion of $(x+y)(x+y) \cdots(x+y)$, in how many ways can a term have the form $x^{n-k} y^{k}$?
From the n factors $(x+y)$, you must choose a " y " exactly k times.
Therefore, $\binom{n}{k}$ ways. We recover the desired equation.

