Introduction to Symmetry

Many combinatorial objects have a natural symmetry.
Example. In how many ways can we seat 4 people at a round table?

Introduction to Symmetry

Many combinatorial objects have a natural symmetry.
Example. In how many ways can we seat 4 people at a round table?

There are 4! permutations; however, each of \qquad rotations gives the same order of guests. Dividing gives the \qquad arrangements.

Introduction to Symmetry

Many combinatorial objects have a natural symmetry.
Example. In how many ways can we seat 4 people at a round table?

There are 4! permutations; however, each of \qquad rotations gives the same order of guests. Dividing gives the \qquad arrangements.

- In how many ways can we arrange 10 people into five pairs?
- In how many ways can we k-color the vertices of a square?

Introduction to Symmetry

Many combinatorial objects have a natural symmetry.
Example. In how many ways can we seat 4 people at a round table?

There are 4! permutations; however, each of \qquad rotations gives the same order of guests. Dividing gives the \qquad arrangements.

- In how many ways can we arrange 10 people into five pairs?
- In how many ways can we k-color the vertices of a square?

In order to approach counting questions involving symmetry rigorously, we use the mathematical notion of equivalence relation.

Equivalence relations

Definition: An equivalence relation \mathcal{E} on a set A satisfies the following properties:

- Reflexive: For all $a \in A, a \mathcal{E} a$.
- Symmetric: For all $a, b \in A$, if $a \mathcal{E} b$, then $b \mathcal{E} a$.
- Transitive: For all $a, b, c \in A$, if $a \mathcal{E} b$, and $b \mathcal{E} c$, then $a \mathcal{E} c$.

Equivalence relations

Definition: An equivalence relation \mathcal{E} on a set A satisfies the following properties:

- Reflexive: For all $a \in A, a \mathcal{E} a$.
- Symmetric: For all $a, b \in A$, if $a \mathcal{E} b$, then $b \mathcal{E} a$.
- Transitive: For all $a, b, c \in A$, if $a \mathcal{E} b$, and $b \mathcal{E} c$, then $a \mathcal{E} c$.

Example. When sitting four people at a round table, let A be all 4 -permutations. We say $a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ are "equivalent" $(a \mathcal{E} b)$ if they are rotations of each other.

Verify that \mathcal{E} is an equivalence relation.

Equivalence relations

Definition: An equivalence relation \mathcal{E} on a set A satisfies the following properties:

- Reflexive: For all $a \in A, a \mathcal{E} a$.
- Symmetric: For all $a, b \in A$, if $a \mathcal{E} b$, then $b \mathcal{E} a$.
- Transitive: For all $a, b, c \in A$, if $a \mathcal{E} b$, and $b \mathcal{E} c$, then $a \mathcal{E} c$.

Example. When sitting four people at a round table, let A be all 4 -permutations. We say $a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ are "equivalent" $(a \mathcal{E} b)$ if they are rotations of each other.

Verify that \mathcal{E} is an equivalence relation.

- It is reflexive because:

Equivalence relations

Definition: An equivalence relation \mathcal{E} on a set A satisfies the following properties:

- Reflexive: For all $a \in A, a \mathcal{E} a$.
- Symmetric: For all $a, b \in A$, if $a \mathcal{E} b$, then $b \mathcal{E} a$.
- Transitive: For all $a, b, c \in A$, if $a \mathcal{E} b$, and $b \mathcal{E} c$, then $a \mathcal{E} c$.

Example. When sitting four people at a round table, let A be all 4 -permutations. We say $a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ are "equivalent" $(a \mathcal{E} b)$ if they are rotations of each other.

Verify that \mathcal{E} is an equivalence relation.

- It is reflexive because:
- It is symmetric because:

Equivalence relations

Definition: An equivalence relation \mathcal{E} on a set A satisfies the following properties:

- Reflexive: For all $a \in A, a \mathcal{E} a$.
- Symmetric: For all $a, b \in A$, if $a \mathcal{E} b$, then $b \mathcal{E} a$.
- Transitive: For all $a, b, c \in A$, if $a \mathcal{E} b$, and $b \mathcal{E} c$, then $a \mathcal{E} c$.

Example. When sitting four people at a round table, let A be all 4 -permutations. We say $a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ are "equivalent" $(a \mathcal{E} b)$ if they are rotations of each other.

Verify that \mathcal{E} is an equivalence relation.

- It is reflexive because:
- It is symmetric because:
- It is transitive because:

Equivalence classes

It is natural to investigate the set of all elements related to a :
Definition: The equivalence class containing a is the set

$$
\mathcal{E}(a)=\{x \in A: x \mathcal{E} a\} .
$$

Equivalence classes

It is natural to investigate the set of all elements related to a :
Definition: The equivalence class containing a is the set

$$
\mathcal{E}(a)=\{x \in A: x \mathcal{E} a\} .
$$

Class 1: $\{(1,2,3,4),(2,3,4,1),(3,4,1,2),(4,1,2,3)\}$
Class 2: $\{(1,2,4,3),(2,4,3,1),(4,3,1,2),(3,1,2,4)\}$
Class 3: $\{(1,3,2,4),(3,2,4,1),(2,4,1,3),(4,1,3,2)\}$
Class 4: $\{(1,3,4,2),(3,4,2,1),(4,2,1,3),(2,1,3,4)\}$
Class 5: $\{(1,4,2,3),(4,2,3,1),(2,3,1,4),(3,1,4,2)\}$
Class 6: $\{(1,4,3,2),(4,3,2,1),(3,2,1,4),(2,1,4,3)\}$

Equivalence classes

It is natural to investigate the set of all elements related to a :
Definition: The equivalence class containing a is the set

$$
\mathcal{E}(a)=\{x \in A: x \mathcal{E} a\} .
$$

Class 1: $\{(1,2,3,4),(2,3,4,1),(3,4,1,2),(4,1,2,3)\}$
Class 2: $\{(1,2,4,3),(2,4,3,1),(4,3,1,2),(3,1,2,4)\}$
Class 3: $\{(1,3,2,4),(3,2,4,1),(2,4,1,3),(4,1,3,2)\}$
Class 4: $\{(1,3,4,2),(3,4,2,1),(4,2,1,3),(2,1,3,4)\}$
Class 5: $\{(1,4,2,3),(4,2,3,1),(2,3,1,4),(3,1,4,2)\}$
Class 6: $\{(1,4,3,2),(4,3,2,1),(3,2,1,4),(2,1,4,3)\}$

- Our original question asks to count equivalence classes (!).

Equivalence classes

It is natural to investigate the set of all elements related to a :
Definition: The equivalence class containing a is the set

$$
\mathcal{E}(a)=\{x \in A: x \mathcal{E} a\} .
$$

Class 1: $\{(1,2,3,4),(2,3,4,1),(3,4,1,2),(4,1,2,3)\}$
Class 2: $\{(1,2,4,3),(2,4,3,1),(4,3,1,2),(3,1,2,4)\}$
Class 3: $\{(1,3,2,4),(3,2,4,1),(2,4,1,3),(4,1,3,2)\}$
Class 4: $\{(1,3,4,2),(3,4,2,1),(4,2,1,3),(2,1,3,4)\}$
Class 5: $\{(1,4,2,3),(4,2,3,1),(2,3,1,4),(3,1,4,2)\}$
Class 6: $\{(1,4,3,2),(4,3,2,1),(3,2,1,4),(2,1,4,3)\}$

- Our original question asks to count equivalence classes (!).
- Theorem 1.4.3. If $a \mathcal{E} b$, then $\mathcal{E}(a)=\mathcal{E}(b)$.

Equivalence classes

It is natural to investigate the set of all elements related to a :
Definition: The equivalence class containing a is the set

$$
\mathcal{E}(a)=\{x \in A: x \mathcal{E} a\} .
$$

Class 1: $\{(1,2,3,4),(2,3,4,1),(3,4,1,2),(4,1,2,3)\}$
Class 2: $\{(1,2,4,3),(2,4,3,1),(4,3,1,2),(3,1,2,4)\}$
Class 3: $\{(1,3,2,4),(3,2,4,1),(2,4,1,3),(4,1,3,2)\}$
Class 4: $\{(1,3,4,2),(3,4,2,1),(4,2,1,3),(2,1,3,4)\}$
Class 5: $\{(1,4,2,3),(4,2,3,1),(2,3,1,4),(3,1,4,2)\}$
Class 6: $\{(1,4,3,2),(4,3,2,1),(3,2,1,4),(2,1,4,3)\}$

- Our original question asks to count equivalence classes (!).
- Theorem 1.4.3. If $a \mathcal{E} b$, then $\mathcal{E}(a)=\mathcal{E}(b)$.
- Every element of A is in one and only one equivalence class.
- We say: "The equivalence classes of \mathcal{E} partition A."

Equivalence classes partition A

Definition: A partition of a set S is a set of non-empty disjoint subsets of S whose union is S.

Example. Partitions of $S=\{*, \Omega, \boldsymbol{\varphi}, ?\}$ include:

- $\{\{*, \Gamma\},\{?\},\{\boldsymbol{\phi}\}\}$
- $\{\{\Omega, \boldsymbol{\mu}\},\{*, ?\}\}$

Every element is in some subset and no element is in multiple subsets.

Equivalence classes partition A

Definition: A partition of a set S is a set of non-empty disjoint subsets of S whose union is S.

Example. Partitions of $S=\{*, \Omega, \boldsymbol{\varphi}, ?\}$ include:

- $\{\{*, \bigcirc\},\{?\},\{\boldsymbol{\phi}\}\}$
- $\{\{\Omega, \boldsymbol{\mu}\},\{*, ?\}\}$

Every element is in some subset and no element is in multiple subsets.
Key idea: (Thm 1.4.5) The set of equivalence classes of A partitions A.

- Every equivalence class is non-empty.
- Every element of A is in one and only one equivalence class.

Equivalence classes partition A

Definition: A partition of a set S is a set of non-empty disjoint subsets of S whose union is S.

Example. Partitions of $S=\{*, \Omega, \boldsymbol{\varphi}, ?\}$ include:

- $\{\{*, \bigcirc\},\{?\},\{\boldsymbol{\phi}\}\}$
- $\left\{\left\{\mathrm{D}_{\boldsymbol{\varphi}}^{\boldsymbol{\phi}}\right\},\{*, ?\}\right\}$

Every element is in some subset and no element is in multiple subsets.
Key idea: (Thm 1.4.5) The set of equivalence classes of A partitions A.

- Every equivalence class is non-empty.
- Every element of A is in one and only one equivalence class.

The equivalence principle: (p.37) Let \mathcal{E} be an equivalence relation on a finite set A. If every equivalence class has size C, then \mathcal{E} has $|A| / C$ equivalence classes.

Permutations of multisets

Example. How many different orderings are there of the letters in the word MISSISSIPPI?
Setup: If the letters were all distinguishable, we would have a permutation of 11 letters, $\{M, P, P, I, I, I, I, S, S, S, S\}$.

Permutations of multisets

Example. How many different orderings are there of the letters in the word MISSISSIPPI?
Setup: If the letters were all distinguishable, we would have a permutation of 11 letters, $\{M, P, P, I, I, I, I, S, S, S, S\}$.

Define $a \mathcal{E} b$ if a and b are the same word when color is ignored. (Is this an equivalence relation?)

Permutations of multisets

Example. How many different orderings are there of the letters in the word MISSISSIPPI?
Setup: If the letters were all distinguishable, we would have a permutation of 11 letters, $\{M, P, P, I, I, I, I, S, S, S, S\}$.

Define $a \mathcal{E} b$ if a and b are the same word when color is ignored. (Is this an equivalence relation?)

Question: How many words are in the same equivalence class?

Permutations of multisets

Example. How many different orderings are there of the letters in the word MISSISSIPPI?
Setup: If the letters were all distinguishable, we would have a permutation of 11 letters, $\{M, P, P, I, I, I, I, S, S, S, S\}$.

Define $a \mathcal{E} b$ if a and b are the same word when color is ignored. (Is this an equivalence relation?)

Question: How many words are in the same equivalence class?
Alternatively, count directly.

- In how many ways can you position the S 's?

Permutations of multisets

Example. How many different orderings are there of the letters in the word MISSISSIPPI?
Setup: If the letters were all distinguishable, we would have a permutation of 11 letters, $\{M, P, P, I, I, I, I, S, S, S, S\}$.

Define $a \mathcal{E} b$ if a and b are the same word when color is ignored. (Is this an equivalence relation?)
Question: How many words are in the same equivalence class?
Alternatively, count directly.

- In how many ways can you position the S 's?
- With S's placed, how many choices for the I's?
- With S's, I's placed, how many choices for the P's?
- With S's, I's, P's placed, how many choices for the M?

The Equivalence Principle (Group Activity)

Example. In how many ways can we arrange 10 people into five pairs?

The Equivalence Principle (Group Activity)

Example. In how many ways can we arrange 10 people into five pairs?
Setup: Let A be the set of 10 -lists, $\left(a_{1}, a_{2}, \ldots, a_{9}, a_{10}\right)=a \in A$.
The list a will represent the pairings $\left\{\left\{a_{1}, a_{2}\right\}, \ldots,\left\{a_{9}, a_{10}\right\}\right\}$.

The Equivalence Principle (Group Activity)

Example. In how many ways can we arrange 10 people into five pairs? Setup: Let A be the set of 10 -lists, $\left(a_{1}, a_{2}, \ldots, a_{9}, a_{10}\right)=a \in A$. The list a will represent the pairings $\left\{\left\{a_{1}, a_{2}\right\}, \ldots,\left\{a_{9}, a_{10}\right\}\right\}$.

Define two lists a and b to be equivalent if they give the same pairings. [For example, $(3,2,9,10,1,5,8,7,4,6) \equiv(2,3,9,10,1,5,6,4,8,7)$.]
(Why is this an equivalence relation?)

The Equivalence Principle (Group Activity)

Example. In how many ways can we arrange 10 people into five pairs? Setup: Let A be the set of 10 -lists, $\left(a_{1}, a_{2}, \ldots, a_{9}, a_{10}\right)=a \in A$. The list a will represent the pairings $\left\{\left\{a_{1}, a_{2}\right\}, \ldots,\left\{a_{9}, a_{10}\right\}\right\}$.

Define two lists a and b to be equivalent if they give the same pairings. [For example, $(3,2,9,10,1,5,8,7,4,6) \equiv(2,3,9,10,1,5,6,4,8,7)$.]
(Why is this an equivalence relation?)

We ask: How many different 10 -lists are in the same equivalence class? Answer:

By the equivalence principle,

Blah Blah Blah

Careful: Conjugacy classes might not be of equal size.

Blah Blah Blah

Careful: Conjugacy classes might not be of equal size.
Example. Let A be the subsets of [4]. Define $S \mathcal{E} T$ when $|S|=|T|$. Determine the number of conjugacy classes of \mathcal{E}.

Blah Blah Blah

Careful: Conjugacy classes might not be of equal size.
Example. Let A be the subsets of [4]. Define $S \mathcal{E} T$ when $|S|=|T|$. Determine the number of conjugacy classes of \mathcal{E}.
Solution. (nOT) We know that $\mathcal{E}(\{1\})=\{\{1\},\{2\},\{3\},\{4\}\}$, of size 4. Since $|A|=24$, there are $\frac{24}{4}=6$ conjugacy classes.

Blah Blah Blah

Careful: Conjugacy classes might not be of equal size.
Example. Let A be the subsets of [4]. Define $S \mathcal{E} T$ when $|S|=|T|$. Determine the number of conjugacy classes of \mathcal{E}.
Solution. (nOT) We know that $\mathcal{E}(\{1\})=\{\{1\},\{2\},\{3\},\{4\}\}$, of size 4. Since $|A|=24$, there are $\frac{24}{4}=6$ conjugacy classes.
Solution. The conjugacy classes correspond to

