Counting integral solutions

Question: How many non-negative integer solutions are there of $x_1 + x_2 + x_3 + x_4 = 10$?

- ► Give some examples of solutions.
- Characterize what solutions look like.
- ► A combinatorial object with a similar flavor is:

In general, the number of non-negative integer solutions to $x_1 + x_2 + \cdots + x_n = k$ is _____.

Counting integral solutions

Question: How many non-negative integer solutions are there of $x_1 + x_2 + x_3 + x_4 = 10$?

- ▶ Give some examples of solutions.
- ► Characterize what solutions look like.
- ► A combinatorial object with a similar flavor is:

In general, the number of non-negative integer solutions to $x_1 + x_2 + \cdots + x_n = k$ is _____.

Question: How many **positive** integer solutions are there of $x_1 + x_2 + x_3 + x_4 = 10$, where $x_4 \ge 3$?

The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

Answer: Condition on how many digits.

▶ Length 1:

► Length 2:

► Length 3:

► Length 4:

▶ Length 5,6:

► Total:

The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

Answer: Condition on how many digits.

► Length 1:

► Length 2:

► Length 3:

► Length 4:

► Length 5,6:

▶ Total:

★ Every palindrome between 1 and 999999 is counted once.

The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

Answer: Condition on how many digits.

► Length 1:

► Length 4:

► Length 2:

► Length 5,6:

▶ Length 3:

► Total:

★ Every palindrome between 1 and 999999 is counted once.

This illustrates the sum principle:

Suppose the objects to be counted can be broken into k disjoint and exhaustive cases. If there are n_j objects in case j, then there are $n_1 + n_2 + \cdots + n_k$ objects in all.

Counting pitfalls

When counting, there are two common pitfalls:

Counting pitfalls

When counting, there are two common pitfalls:

▶ Undercounting

Counting pitfalls

When counting, there are two common pitfalls:

▶ Undercounting

▶ Overcounting

Counting pitfalls

When counting, there are two common pitfalls:

- Undercounting
 - ▶ Often, forgetting cases when applying the sum principle.
 - ► **Ask:** Did I miss something?
- Overcounting

Counting pitfalls

When counting, there are two common pitfalls:

- Undercounting
 - ▶ Often, forgetting cases when applying the sum principle.
 - ► **Ask:** Did I miss something?
- ▶ Overcounting
 - ▶ Often, misapplying the product principle.
 - Ask: Do cases need to be counted in different ways?
 - ▶ **Ask:** Does the same object appear in multiple ways?

Counting pitfalls

When counting, there are two common pitfalls:

- Undercounting
 - ▶ Often, forgetting cases when applying the sum principle.
 - ► **Ask:** Did I miss something?
- ▶ Overcounting
 - ▶ Often, misapplying the product principle.
 - ▶ **Ask:** Do cases need to be counted in different ways?
 - ▶ Ask: Does the same object appear in multiple ways?

Common example: A deck of cards.

There are four suits: Diamond ♦, Heart ♥, Club ♣, Spade ♠.

Each has 13 cards: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2.

Counting pitfalls

When counting, there are two common pitfalls:

- Undercounting
 - ▶ Often, forgetting cases when applying the sum principle.
 - ► **Ask:** Did I miss something?
- ▶ Overcounting
 - ▶ Often, misapplying the product principle.
 - Ask: Do cases need to be counted in different ways?
 - Ask: Does the same object appear in multiple ways?

Common example: A deck of cards.

There are four suits: Diamond ♦, Heart ♥, Club ♣, Spade ♠. Each has 13 cards: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2.

Example. Suppose you are dealt two diamonds between 2 and 10. In how many ways can the product be even?

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart \heartsuit ?

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart \heartsuit ?

Answer: There are __ aces, so there are __ choices for the down card.

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart ♥?

Answer: There are ___ aces, so there are ___ choices for the down card. There are ___ hearts, so there are ___ choices for the up card.

Overcounting

```
Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart ♥?

Answer: There are ___ aces, so there are ___ choices for the down card. There are ___ hearts, so there are ___ choices for the up card. By the product principle, there are 52 ways in all.
```

Overcounting

```
Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart ♥?

Answer: There are __ aces, so there are __ choices for the down card. There are __ hearts, so there are __ choices for the up card. By the product principle, there are 52 ways in all.
```

Except:

Overcounting

```
Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart ♥?

Answer: There are __ aces, so there are __ choices for the down card. There are __ hearts, so there are __ choices for the up card. By the product principle, there are 52 ways in all.

Except:
```

Remember to ask: Do cases need to be counted in different ways?

Overcounting

Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

Examples: 1114, 1229, 5555 Non-examples: 1231, 9898.

Overcounting

Example. How many 4-lists take	an from [9] have at leas	st one pair
of adjacent elements equal?		
Examples: 1114, 1229, 5555	Non-examples: 1231,	9898.
Strategy:		
1. Choose where the adjacent	equal elements are.	(ways)
2. Choose which number they	are.	(ways)
3. Choose the numbers for the	remaining elements.	(ways)

Have many 4 lists taken from [0] have at least one main

Overcounting

Example. How many 4-lists taken from [9] have at least one pair
of adjacent elements equal?
Examples: 1114, 1229, 5555 Non-examples: 1231, 9898.
Strategy:
1. Choose where the adjacent equal elements are. (ways)
2. Choose which number they are. (ways)
3. Choose the numbers for the remaining elements. (ways)
By the product principle, there are ways in all.

Overcounting

Example. How many 4-lists taken from [9] have at least one pair
of adjacent elements equal?
Examples: 1114, 1229, 5555 Non-examples: 1231, 9898.
Strategy:
1. Choose where the adjacent equal elements are. (ways)
2. Choose which number they are. (ways)
3. Choose the numbers for the remaining elements. (ways)
By the product principle, there are ways in all.
Except:

Overcounting

example. How many 4-lists taken from [9] have at least one pair
f adjacent elements equal?
Examples: 1114, 1229, 5555 Non-examples: 1231, 9898.
Strategy:
1. Choose where the adjacent equal elements are. (ways)
2. Choose which number they are. (ways)
3. Choose the numbers for the remaining elements. (ways)
By the product principle, there are ways in all.
xcept:

Remember to ask: Does the same object appear in multiple ways?

Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

—Compare this to—

Q2: How many 4-lists taken from [9] have **no** pairs of adjacent elements equal?

What can we say about:

Q1: Q2:

Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

—Compare this to—

Q2: How many 4-lists taken from [9] have **no** pairs of adjacent elements equal?

What can we say about:

Q1: Q2: Together:

Q3:

Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

—Compare this to—

Q2: How many 4-lists taken from [9] have no pairs of adjacent elements equal?

What can we say about:

Q1: Q2: Together:

Strategy: It is sometimes easier to count the complement.

Answer to Q3:

Q3:

Counting the complement

Q1: How many 4-lists taken from [9] have **at least one** pair of adjacent elements equal?

—Compare this to—

Q2: How many 4-lists taken from [9] have **no** pairs of adjacent elements equal?

What can we say about:

Q1: Q2: Together:

Q3:

Strategy: It is sometimes easier to count the complement.

Answer to Q3:

Answer to Q2:

Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

—Compare this to—

Q2: How many 4-lists taken from [9] have **no** pairs of adjacent elements equal?

What can we say about:

Q1: Q2: Together:

Q3:

Strategy: It is sometimes easier to count the complement.

Answer to Q3:

Answer to Q2:

Answer to Q1:

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- ► Count the total number of hands.
- ► Count the number of possible full houses.

▶ Divide to find the probability.

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- ▶ Count the total number of hands.
- ► Count the number of possible full houses.
 - ► Choose the denomination of the three-of-a-kind.
 - ▶ Choose which three suits they are in.

▶ Divide to find the probability.

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- ► Count the total number of hands.
- ▶ Count the number of possible full houses.
 - ► Choose the denomination of the three-of-a-kind.
 - ► Choose which three suits they are in.
 - ► Choose the denomination of the pair.
 - ► Choose which two suits they are in.
 - ► Apply the multiplication principle.
- ▶ Divide to find the probability.

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- ▶ Count the total number of hands.
- ► Count the number of possible full houses. # of ways
 - ► Choose the denomination of the three-of-a-kind.
 - ▶ Choose which three suits they are in.
 - Choose the denomination of the pair.
 - ► Choose which two suits they are in.
 - ► Apply the multiplication principle. **Total:**
- ▶ Divide to find the probability.

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- ▶ Count the total number of hands.
- ► Count the number of possible full houses. # of ways
 - ► Choose the denomination of the three-of-a-kind.
 - ▶ Choose which three suits they are in.
 - ► Choose the denomination of the pair.
 - ► Choose which two suits they are in.
 - ► Apply the multiplication principle. **Total:**
- ► Divide to find the probability.

 $\frac{3744}{2598960} \approx 0.14\%$

Bijections — §1.3

Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Introduction to Bijections

Key tool: A useful method of proving that two sets *A* and *B* are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

```
Set A: \{\emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}, \{s_3\}, \{s_1, s_3\}, \{s_2, s_3\}, \{s_1, s_2, s_3\}\}
```

```
Set B: {000, 100, 010, 110, 001, 101, 011, 111 }
```

Introduction to Bijections

Key tool: A useful method of proving that two sets *A* and *B* are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

```
Set A: \{\emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}, \{s_3\}, \{s_1, s_3\}, \{s_2, s_3\}, \{s_1, s_2, s_3\}\}

Bijection: \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow Set B: \{000, 100, 010, 110, 001, 101, 011, 111\}
```

Introduction to Bijections

Key tool: A useful method of proving that two sets *A* and *B* are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

Rule: Given $a \in A$, (a is a subset), define $b \in B$ (b is a word): If $s_i \in a$, then letter i in b is 1. If $s_i \notin a$, then letter i in b is 0.

Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

Rule: Given $a \in A$, (a is a subset), define $b \in B$ (b is a word): If $s_i \in a$, then letter i in b is 1. If $s_i \notin a$, then letter i in b is 0.

Difficulties:

- ► Finding the function or rule (requires rearranging, ordering)
- ▶ Proving the function or rule (show it **IS** a bijection).

What is a Function?

Reminder: A **function** f from A to B (write $f:A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined as an element $b \in B$ (write $f:a \mapsto b$).

What is a Function?

Reminder: A **function** f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined as an element $b \in B$ (write $f: a \mapsto b$).

- ▶ *A* is called the **domain**. (We write A = dom(f))
- ▶ *B* is called the **codomain**. (We write B = cod(f))

What is a Function?

Reminder: A **function** f from A to B (write $f:A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined as an element $b \in B$ (write $f:a \mapsto b$).

- ▶ A is called the **domain**. (We write A = dom(f))
- ▶ *B* is called the **codomain**. (We write B = cod(f))
- ▶ The **range** of *f* is the set of values that *f* takes on:

$$rng(f) = \{b \in B : f(a) = b \text{ for at least one } a \in A\}$$

What is a Function?

Reminder: A **function** f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined as an element $b \in B$ (write $f: a \mapsto b$).

- ▶ A is called the **domain**. (We write A = dom(f))
- ▶ *B* is called the **codomain**. (We write B = cod(f))
- ▶ The **range** of *f* is the set of values that *f* takes on:

$$rng(f) = \{b \in B : f(a) = b \text{ for at least one } a \in A\}$$

Example. Let A be the set of 3-subsets of [n] and let B be the set of 3-lists of [n]. Then define $f:A\to B$ to be the function that takes a 3-subset $\{i_1,i_2,i_3\}\in A$ (with $i_1\leq i_2\leq i_3$) to the word $i_1i_2i_3\in B$.

Question: Is rng(f) = B?

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

What is a Bijection?

```
Definition: A function f: A \to B is one-to-one (an injection) when For each a_1, a_2 \in A, if f(a_1) = f(a_2), then a_1 = a_2. Equivalently,
```

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

What is a Bijection?

```
Definition: A function f:A\to B is one-to-one (an injection) when For each a_1,a_2\in A, if f(a_1)=f(a_2), then a_1=a_2. Equivalently,

For each a_1,a_2\in A, if a_1\neq a_2, then f(a_1)\neq f(a_2).

"When the inputs are different, the outputs are different." (picture)
```

What is a Bijection?

```
Definition: A function f:A\to B is one-to-one (an injection) when For each a_1,a_2\in A, if f(a_1)=f(a_2), then a_1=a_2. Equivalently,

For each a_1,a_2\in A, if a_1\neq a_2, then f(a_1)\neq f(a_2).

"When the inputs are different, the outputs are different." (picture)
```

Definition: A function $f:A\to B$ is **onto** (a **surjection**) when For each $b\in B$, there exists some $a\in A$ such that f(a)=b. "Every output gets hit."

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$. Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

"When the inputs are different, the outputs are different." (picture)

Definition: A function $f:A\to B$ is **onto** (a **surjection**) when For each $b\in B$, there exists some $a\in A$ such that f(a)=b. "Every output gets hit."

Definition: A function $f: A \rightarrow B$ is a **bijection** if it is both one-to-one and onto.

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

"When the inputs are different, the outputs are different." (picture)

Definition: A function $f:A\to B$ is **onto** (a **surjection**) when For each $b\in B$, there exists some $a\in A$ such that f(a)=b. "Every output gets hit."

Definition: A function $f: A \rightarrow B$ is a **bijection** if it is both one-to-one and onto.

The function from the previous page is _____

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$. Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

"When the inputs are different, the outputs are different." (picture)

Definition: A function $f:A\to B$ is **onto** (a **surjection**) when For each $b\in B$, there exists some $a\in A$ such that f(a)=b. "Every output gets hit."

Definition: A function $f: A \rightarrow B$ is a **bijection** if it is both one-to-one and onto.

The function from the previous page is _____

What is an example of a function that is onto and not one-to-one?

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proof. Let A be the set of k-subsets of [n] and let B be the set of (n-k)-subsets of [n].

A bijection between A and B will prove $\binom{n}{k} = |A| = |B| = \binom{n}{n-k}$.

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proof. Let A be the set of k-subsets of [n] and let B be the set of (n - k)-subsets of [n].

A bijection between A and B will prove $\binom{n}{k} = |A| = |B| = \binom{n}{n-k}$.

Step 1: Find a candidate bijection.

Strategy. Try out a small (enough) example. Try n = 5 and k = 2.

$$\left\{
 \begin{cases}
 \{1,2\}, \{1,3\} \\
 \{1,4\}, \{1,5\} \\
 \{2,3\}, \{2,4\} \\
 \{2,5\}, \{3,4\} \\
 \{3,5\}, \{4,5\}
 \end{cases}
\right\}
\longleftrightarrow
\left\{
 \begin{cases}
 \{1,2,3\}, \{1,2,4\} \\
 \{1,2,5\}, \{1,3,4\} \\
 \{1,3,5\}, \{1,4,5\} \\
 \{2,3,4\}, \{2,3,5\} \\
 \{2,4,5\}, \{3,4,5\}
 \end{cases}
\right\}$$

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proof. Let A be the set of k-subsets of [n] and let B be the set of (n - k)-subsets of [n].

A bijection between A and B will prove $\binom{n}{k} = |A| = |B| = \binom{n}{n-k}$.

Step 1: Find a candidate bijection.

Strategy. Try out a small (enough) example. Try n = 5 and k = 2.

$$\left\{
 \begin{cases}
 \{1,2\}, \{1,3\} \\
 \{1,4\}, \{1,5\} \\
 \{2,3\}, \{2,4\} \\
 \{2,5\}, \{3,4\} \\
 \{3,5\}, \{4,5\}
 \end{cases}
\right\}
\longleftrightarrow
\left\{
 \begin{cases}
 \{1,2,3\}, \{1,2,4\} \\
 \{1,2,5\}, \{1,3,4\} \\
 \{1,3,5\}, \{1,4,5\} \\
 \{2,3,4\}, \{2,3,5\} \\
 \{2,4,5\}, \{3,4,5\}
 \end{cases}
\right\}$$

Guess: Let S be a k-subset of [n]. Perhaps f(S) =.

Proving a Bijection

Step 2: Prove *f* is well defined.

The function f is well defined. If S is any k-subset of [n], then S^c is a subset of [n] with n-k members. Therefore $f:A\to B$.

Proving a Bijection

Step 2: Prove *f* **is well defined.**

The function f is well defined. If S is any k-subset of [n], then S^c is a subset of [n] with n-k members. Therefore $f:A\to B$.

Step 3: Prove f is a bijection.

Strategy. Prove that f is both one-to-one and onto.

Proving a Bijection

Step 2: Prove *f* is well defined.

The function f is well defined. If S is any k-subset of [n], then S^c is a subset of [n] with n-k members. Therefore $f:A\to B$.

Step 3: Prove f is a bijection.

Strategy. Prove that f is both one-to-one and onto.

f is 1-to-1: Suppose that S_1 and S_2 are two k-subsets of [n] such that $f(S_1) = f(S_2)$. That is, $S_1^c = S_2^c$. This means that for all $i \in [n]$, then $i \notin S_1$ if and only if $i \notin S_2$. Therefore $S_1 = S_2$ and f is 1-to-1.

Proving a Bijection

Step 2: Prove *f* is well defined.

The function f is well defined. If S is any k-subset of [n], then S^c is a subset of [n] with n-k members. Therefore $f:A\to B$.

Step 3: Prove f is a bijection.

Strategy. Prove that f is both one-to-one and onto.

f is 1-to-1: Suppose that S_1 and S_2 are two k-subsets of [n] such that $f(S_1)=f(S_2)$. That is, $S_1^c=S_2^c$. This means that for all $i\in[n]$, then $i\notin S_1$ if and only if $i\notin S_2$. Therefore $S_1=S_2$ and f is 1-to-1.

f is onto: Suppose that $T \in B$ is an (n - k)-subset of [n]. We must find a set $S \in A$ satisfying f(S) = T. Choose S =______. Then $S \in A$ (why?), and $f(S) = S^c = T$, so f is onto.

We conclude that f is a bijection and therefore, $\binom{n}{k} = \binom{n}{n-k}$.

Using the Inverse Function

When $f: A \to B$ is 1-to-1, we can define f's **inverse**. We write f^{-1} , and it is a function from rng(f) to A. It is defined via f. If $f: a \mapsto b$, then $f^{-1}: b \mapsto a$.

Using the Inverse Function

When $f: A \rightarrow B$ is 1-to-1, we can define f's **inverse**.

We write f^{-1} , and it is a function from rng(f) to A.

It is defined via f. If $f: a \mapsto b$, then $f^{-1}: b \mapsto a$.

Caution: When f is a function from A to B, f^{-1} might not be a function from B to A.

Using the Inverse Function

When $f: A \rightarrow B$ is 1-to-1, we can define f's **inverse**.

We write f^{-1} , and it is a function from rng(f) to A.

It is defined via f. If $f: a \mapsto b$, then $f^{-1}: b \mapsto a$.

Caution: When f is a function from A to B, f^{-1} might not be a function from B to A.

Theorem. Suppose that A and B are finite sets and that $f: A \to B$ is a function. If f^{-1} is a function with domain B, then f is a bijection.

Using the Inverse Function

When $f: A \rightarrow B$ is 1-to-1, we can define f's **inverse**.

We write f^{-1} , and it is a function from rng(f) to A.

It is defined via f. If $f: a \mapsto b$, then $f^{-1}: b \mapsto a$.

Caution: When f is a function from A to B, f^{-1} might not be a function from B to A.

Theorem. Suppose that A and B are finite sets and that $f:A\to B$ is a function. If f^{-1} is a function with domain B, then f is a bijection. Proof. Since f^{-1} is only defined when f is 1-to-1, we need only prove that f is onto. Suppose $b \in B$. By assumption, $f^{-1}(b) \in A$ exists and $f(f^{-1}(b)) = b$. So f is onto, and is a bijection.

Using the Inverse Function

When $f: A \rightarrow B$ is 1-to-1, we can define f's **inverse**.

We write f^{-1} , and it is a function from rng(f) to A.

It is defined via f. If $f: a \mapsto b$, then $f^{-1}: b \mapsto a$.

Caution: When f is a function from A to B, f^{-1} might not be a function from B to A.

Theorem. Suppose that A and B are finite sets and that $f:A\to B$ is a function. If f^{-1} is a function with domain B, then f is a bijection. Proof. Since f^{-1} is only defined when f is 1-to-1, we need only prove that f is onto. Suppose $b \in B$. By assumption, $f^{-1}(b) \in A$ exists and $f(f^{-1}(b)) = b$. So f is onto, and is a bijection.

Consequence: An alternative method for proving a bijection is:

- ▶ Find a rule $g: B \to A$ which always takes f(a) back to a.
- ▶ Verify that the domain of g is all of B.

Using the Inverse Function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

Using the Inverse Function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

```
even: \{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\}\ odd: \{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}\
```

Using the Inverse Function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even:
$$\{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\}\$$
 odd: $\{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}\$

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = \begin{cases} S - \{1\} & \text{if } 1 \in S \\ S \cup \{1\} & \text{if } 1 \notin S \end{cases}.$$

▶ $f: A \rightarrow B$ is a well defined function from A to B (why?).

Using the Inverse Function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even:
$$\{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\}\$$
 odd: $\{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}\$

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = \begin{cases} S - \{1\} & \text{if } 1 \in S \\ S \cup \{1\} & \text{if } 1 \notin S \end{cases}.$$

- ▶ $f: A \rightarrow B$ is a well defined function from A to B (why?).
- ▶ f^{-1} exists and equals f (why?)

Using the Inverse Function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even:
$$\{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\}\$$
 odd: $\{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}\$

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = \begin{cases} S - \{1\} & \text{if } 1 \in S \\ S \cup \{1\} & \text{if } 1 \notin S \end{cases}.$$

- ▶ $f: A \rightarrow B$ is a well defined function from A to B (why?).
- ▶ f^{-1} exists and equals f (why?) and has domain B (why?).

Using the Inverse Function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even:
$$\{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\}\$$
 odd: $\{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}\$

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = \left\{ egin{aligned} S - \{1\} & ext{if } 1 \in S \ S \cup \{1\} & ext{if } 1
otin S \end{aligned}
ight\}.$$

- ▶ $f: A \rightarrow B$ is a well defined function from A to B (why?).
- ▶ f^{-1} exists and equals f (why?) and has domain B (why?).

Therefore, f is a bijection, proving the statement, as desired.

Using the Inverse Function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even:
$$\{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\}\$$
 odd: $\{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}\$

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = \left\{ egin{aligned} S - \{1\} & ext{if } 1 \in S \ S \cup \{1\} & ext{if } 1
otin S \end{aligned}
ight\}.$$

- ▶ $f: A \rightarrow B$ is a well defined function from A to B (why?).
- ▶ f^{-1} exists and equals f (why?) and has domain B (why?).

Therefore, f is a bijection, proving the statement, as desired.

Eyebrow-Raising Consequence:
$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.$$