Counting integral solutions

Question: How many non-negative integer solutions are there of $x_{1}+x_{2}+x_{3}+x_{4}=10 ?$

- Give some examples of solutions.
- Characterize what solutions look like.
- A combinatorial object with a similar flavor is:

In general, the number of non-negative integer solutions to $x_{1}+x_{2}+\cdots+x_{n}=k$ is \qquad .

Question: How many positive integer solutions are there of $x_{1}+x_{2}+x_{3}+x_{4}=10$, where $x_{4} \geq 3$?

The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?
Answer: Condition on how many digits.

- Length 1 :
- Length 2 :
- Length 3:
- Total:

Every palindrome between 1 and 999999 is counted once.
This illustrates the sum principle:
Suppose the objects to be counted can be broken into k disjoint and exhaustive cases. If there are n_{j} objects in case j, then there are $n_{1}+n_{2}+\cdots+n_{k}$ objects in all.

Counting pitfalls

When counting, there are two common pitfalls:

- Undercounting
- Often, forgetting cases when applying the sum principle.
- Ask: Did I miss something?
- Overcounting
- Often, misapplying the product principle.
- Ask: Do cases need to be counted in different ways?
- Ask: Does the same object appear in multiple ways?

Common example: A deck of cards.
There are four suits: Diamond \diamond, Heart \diamond, Club \&, Spade $\boldsymbol{\phi}$.
Each has 13 cards: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, $3,2$.
Example. Suppose you are dealt two diamonds between 2 and 10 . In how many ways can the product be even?

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart \odot ?
Answer: There are __ aces, so there are ___ choices for the down card. There are \qquad hearts, so there are \qquad choices for the up card.
By the product principle, there are 52 ways in all.

Except:

Remember to ask: Do cases need to be counted in different ways?

Overcounting

Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?
Examples: 1114, 1229, 5555 Non-examples: 1231, 9898.

Strategy:

1. Choose where the adjacent equal elements are.
(___ ways)
2. Choose which number they are.
3. Choose the numbers for the remaining elements.
(___ ways)
(__ ways)

By the product principle, there are ___ ways in all.

Except:

Remember to ask: Does the same object appear in multiple ways?

Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?
-Compare this to-
Q2: How many 4-lists taken from [9] have no pairs of adjacent elements equal?

What can we say about:
Q1:
Q2:
Together:
Q3:

Strategy: It is sometimes easier to count the complement.
Answer to Q3:
Answer to Q2:
Answer to Q1:

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?
[Three cards of one type and two cards of another type.] 555 K K Game plan:

- Count the total number of hands.
- Count the number of possible full houses. \# of ways
- Choose the denomination of the three-of-a-kind.
- Choose which three suits they are in.
- Choose the denomination of the pair.
- Choose which two suits they are in.
- Apply the multiplication principle. Total:
- Divide to find the probability.

Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a bijection.
A bijection is a function or rule that pairs up elements of A and B.
Example. The set A of subsets of $\left\{s_{1}, s_{2}, s_{3}\right\}$ are in bijection with the set B of binary words of length 3 .

Set A: $\left\{\emptyset,\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{1}, s_{2}\right\},\left\{s_{3}\right\},\left\{s_{1}, s_{3}\right\},\left\{s_{2}, s_{3}\right\},\left\{s_{1}, s_{2}, s_{3}\right\}\right\}$

Set B: $\{000,100,010,110,001,101,011,111\}$
Rule: Given $a \in A$, (a is a subset), define $b \in B$ (b is a word): If $s_{i} \in a$, then letter i in b is 1 . If $s_{i} \notin a$, then letter i in b is 0 .

Difficulties:

- Finding the function or rule (requires rearranging, ordering)
- Proving the function or rule (show it IS a bijection).

What is a Function?

Reminder: A function f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A, f(a)$ is defined as an element $b \in B$ (write $f: a \mapsto b$).

- A is called the domain. (We write $A=\operatorname{dom}(f)$)
- B is called the codomain. (We write $B=\operatorname{cod}(f)$)
- The range of f is the set of values that f takes on:

$$
\operatorname{rng}(f)=\{b \in B: f(a)=b \text { for at least one } a \in A\}
$$

Example. Let A be the set of 3-subsets of [n] and let B be the set of 3 -lists of $[n]$. Then define $f: A \rightarrow B$ to be the function that takes a 3 -subset $\left\{i_{1}, i_{2}, i_{3}\right\} \in A$ (with $i_{1} \leq i_{2} \leq i_{3}$) to the word $i_{1} i_{2} i_{3} \in B$.

Question: Is $\operatorname{rng}(f)=B$?

What is a Bijection?

Definition: A function $f: A \rightarrow B$ is one-to-one (an injection) when
For each $a_{1}, a_{2} \in A$, if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.
Equivalently,
For each $a_{1}, a_{2} \in A$, if $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
"When the inputs are different, the outputs are different." (picture)
Definition: A function $f: A \rightarrow B$ is onto (a surjection) when
For each $b \in B$, there exists some $a \in A$ such that $f(a)=b$.
"Every output gets hit."
Definition: A function $f: A \rightarrow B$ is a bijection if it is both one-to-one and onto.

The function from the previous page is \qquad .

What is an example of a function that is onto and not one-to-one?

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k}=\binom{n}{n-k}$ for $0 \leq k \leq n$.
Proof. Let A be the set of k-subsets of [n] and let B be the set of $(n-k)$-subsets of $[n]$.
A bijection between A and B will prove $\binom{n}{k}=|A|=|B|=\binom{n}{n-k}$.

Step 1: Find a candidate bijection.

Strategy. Try out a small (enough) example. Try $n=5$ and $k=2$.

$$
\left\{\begin{array}{l}
\{1,2\},\{1,3\} \\
\{1,4\},\{1,5\} \\
\{2,3\},\{2,4\} \\
\{2,5\},\{3,4\} \\
\{3,5\},\{4,5\}
\end{array}\right\} \leftrightarrow\left\{\begin{array}{ll}
\{1,2,3\}, & \{1,2,4\} \\
\{1,2,5\}, & \{1,3,4\} \\
\{1,3,5\}, & \{1,4,5\} \\
\{2,3,4\}, & \{2,3,5\} \\
\{2,4,5\}, & \{3,4,5\}
\end{array}\right\}
$$

Guess: Let S be a k-subset of $[n]$. Perhaps $f(S)=$ \qquad .

Proving a Bijection

Step 2: Prove f is well defined.

The function f is well defined. If S is any k-subset of $[n]$, then S^{c} is a subset of $[n]$ with $n-k$ members. Therefore $f: A \rightarrow B$.

Step 3: Prove f is a bijection.

Strategy. Prove that f is both one-to-one and onto.
f is 1-to- 1 : Suppose that S_{1} and S_{2} are two k-subsets of [n] such that $f\left(S_{1}\right)=f\left(S_{2}\right)$. That is, $S_{1}^{c}=S_{2}^{c}$. This means that for all $i \in[n]$, then $i \notin S_{1}$ if and only if $i \notin S_{2}$. Therefore $S_{1}=S_{2}$ and f is 1-to-1.
f is onto: Suppose that $T \in B$ is an $(n-k)$-subset of $[n]$. We must find a set $S \in A$ satisfying $f(S)=T$. Choose $S=$ \qquad . Then $S \in A$ (why?), and $f(S)=S^{c}=T$, so f is onto.
We conclude that f is a bijection and therefore, $\binom{n}{k}=\binom{n}{n-k}$.

Using the Inverse Function

When $f: A \rightarrow B$ is 1-to- 1 , we can define f 's inverse.
We write f^{-1}, and it is a function from $\operatorname{rng}(f)$ to A.
It is defined via f. If $f: a \mapsto b$, then $f^{-1}: b \mapsto a$.
Caution: When f is a function from A to B, f^{-1} might not be a function from B to A.

Theorem. Suppose that A and B are finite sets and that $f: A \rightarrow B$ is a function. If f^{-1} is a function with domain B, then f is a bijection.
Proof. Since f^{-1} is only defined when f is 1-to-1, we need only prove that f is onto. Suppose $b \in B$. By assumption, $f^{-1}(b) \in A$ exists and $f\left(f^{-1}(b)\right)=b$. So f is onto, and is a bijection.

Consequence: An alternative method for proving a bijection is:

- Find a rule $g: B \rightarrow A$ which always takes $f(a)$ back to a.
- Verify that the domain of g is all of B.

Using the Inverse Function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

$$
\begin{aligned}
& \text { even: } \left.\left.\left\{\begin{array}{l}
\emptyset,\left\{s_{1}, s_{2}\right\},\left\{s_{1}, s_{3}\right\}, \\
\text { odd: }\left\{\left\{s_{2}, s_{3}\right\}\right. \\
\left\{\left\{s_{1}\right\},\right.
\end{array}\right\} s_{2}\right\}, \quad\left\{s_{3}\right\},\left\{s_{1}, s_{2}, s_{3}\right\}\right\}
\end{aligned}
$$

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$
f(S)=\left\{\begin{array}{ll}
S-\{1\} & \text { if } 1 \in S \\
S \cup\{1\} & \text { if } 1 \notin S
\end{array}\right\} .
$$

- $f: A \rightarrow B$ is a well defined function from A to B (why?).
- f^{-1} exists and equals f (why?) and has domain B (why?).

Therefore, f is a bijection, proving the statement, as desired.
Eyebrow-Raising Consequence: $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0$.

