Counting integral solutions

Question: How many non-negative integer solutions are there of $x_1 + x_2 + x_3 + x_4 = 10$?

- Give some examples of solutions.
- Characterize what solutions look like.
- ► A combinatorial object with a similar flavor is:

In general, the number of non-negative integer solutions to $x_1 + x_2 + \cdots + x_n = k$ is

Question: How many **positive** integer solutions are there of $x_1 + x_2 + x_3 + x_4 = 10$, where $x_4 \ge 3$?

The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

Answer: Condition on how many digits.

► Length 1:

► Length 4:

26

► Length 2:

► Length 5,6:

► Length 3:

► Total:

★ Every palindrome between 1 and 999999 is counted once.

This illustrates the **sum principle**:

Suppose the objects to be counted can be broken into k disjoint and exhaustive cases. If there are n_j objects in case j, then there are $n_1 + n_2 + \cdots + n_k$ objects in all.

Counting pitfalls

When counting, there are two common pitfalls:

- Undercounting
 - ▶ Often, forgetting cases when applying the sum principle.
 - ► **Ask:** Did I miss something?
- Overcounting
 - ► Often, misapplying the product principle.
 - ► **Ask:** Do cases need to be counted in different ways?
 - ► **Ask:** Does the same object appear in multiple ways?

Common example: A deck of cards.

There are four suits: Diamond \diamondsuit , Heart \heartsuit , Club \clubsuit , Spade \spadesuit .

Each has 13 cards: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2.

Example. Suppose you are dealt two diamonds between 2 and 10. In how many ways can the product be even?

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart \heartsuit ?

Answer: There are ___ aces, so there are ___ choices for the down card. There are ___ hearts, so there are ___ choices for the up card. By the product principle, there are 52 ways in all.

Except:

Remember to ask: Do cases need to be counted in different ways?

Overcounting

Example. How many 4-lists take	en from [9] have at least one pair
of adjacent elements equal?	
Examples: 1114, 1229, 5555	Non-examples: 1231, 9898.
Strategy:	
1. Choose where the adjacent	equal elements are. (ways
2. Choose which number they	are. (ways
3. Choose the numbers for the	e remaining elements. (ways
By the product principle, there a	re ways in all.
Except:	

Remember to ask: Does the same object appear in multiple ways?

Counting the complement

Q1: How many 4-lists taken from [9] have **at least one** pair of adjacent elements equal?

—Compare this to—

Q2: How many 4-lists taken from [9] have **no** pairs of adjacent elements equal?

What can we say about:

Q1:

Q2:

Together:

Q3:

Strategy: It is sometimes easier to **count the complement**.

Answer to Q3:

Answer to Q2:

Answer to Q1:

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- Count the total number of hands.
- Count the number of possible full houses. # of ways
 - Choose the denomination of the three-of-a-kind.
 - Choose which three suits they are in.
 - ► Choose the denomination of the pair.
 - ► Choose which two suits they are in.
 - Apply the multiplication principle. Total:
- Divide to find the probability.

Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

Rule: Given $a \in A$, (a is a subset), define $b \in B$ (b is a word): If $s_i \in a$, then letter i in b is 1. If $s_i \notin a$, then letter i in b is 0.

Difficulties:

- ► Finding the function or rule (requires rearranging, ordering)
- ▶ Proving the function or rule (show it **IS** a bijection).

What is a Function?

Reminder: A **function** f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined as an element $b \in B$ (write $f: a \mapsto b$).

- ▶ A is called the **domain**. (We write A = dom(f))
- ▶ B is called the **codomain**. (We write B = cod(f))
- ightharpoonup The **range** of f is the set of values that f takes on:

$$rng(f) = \{b \in B : f(a) = b \text{ for at least one } a \in A\}$$

Example. Let A be the set of 3-subsets of [n] and let B be the set of 3-lists of [n]. Then define $f:A\to B$ to be the function that takes a 3-subset $\{i_1,i_2,i_3\}\in A$ (with $i_1\leq i_2\leq i_3$) to the word $i_1i_2i_3\in B$.

Question: Is rng(f) = B?

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

"When the inputs are different, the outputs are different." (picture)

Definition: A function $f: A \to B$ is **onto** (a **surjection**) when For each $b \in B$, there exists some $a \in A$ such that f(a) = b. "Every output gets hit."

Definition: A function $f: A \rightarrow B$ is a **bijection** if it is both one-to-one and onto.

The function from the previous page is _____

What is an example of a function that is onto and not one-to-one?

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proof. Let A be the set of k-subsets of [n] and let B be the set of (n - k)-subsets of [n].

A bijection between A and B will prove $\binom{n}{k} = |A| = |B| = \binom{n}{n-k}$.

Step 1: Find a candidate bijection.

Strategy. Try out a small (enough) example. Try n = 5 and k = 2.

$$\left\{
\begin{array}{l}
\{1,2\}, \{1,3\} \\
\{1,4\}, \{1,5\} \\
\{2,3\}, \{2,4\} \\
\{2,5\}, \{3,4\} \\
\{3,5\}, \{4,5\}
\end{array}
\right\}
\longleftrightarrow
\left\{
\begin{array}{l}
\{1,2,3\}, \{1,2,4\} \\
\{1,2,5\}, \{1,3,4\} \\
\{1,3,5\}, \{1,4,5\} \\
\{2,3,4\}, \{2,3,5\} \\
\{2,4,5\}, \{3,4,5\}
\end{array}
\right\}$$

Guess: Let S be a k-subset of [n]. Perhaps $f(S) = \underline{\hspace{1cm}}$.

Proving a Bijection

Step 2: Prove *f* is well defined.

The function f is well defined. If S is any k-subset of [n], then S^c is a subset of [n] with n-k members. Therefore $f:A\to B$.

Step 3: Prove *f* is a bijection.

Strategy. Prove that f is both one-to-one and onto.

f is 1-to-1: Suppose that S_1 and S_2 are two k-subsets of [n] such that $f(S_1) = f(S_2)$. That is, $S_1^c = S_2^c$. This means that for all $i \in [n]$, then $i \notin S_1$ if and only if $i \notin S_2$. Therefore $S_1 = S_2$ and f is 1-to-1.

f is onto: Suppose that $T \in B$ is an (n - k)-subset of [n]. We must find a set $S \in A$ satisfying f(S) = T. Choose $S = \underline{\hspace{1cm}}$. Then $S \in A$ (why?), and $f(S) = S^c = T$, so f is onto.

We conclude that f is a bijection and therefore, $\binom{n}{k} = \binom{n}{n-k}$.

Using the Inverse Function

When $f: A \rightarrow B$ is 1-to-1, we can define f's **inverse**.

We write f^{-1} , and it is a function from rng(f) to A.

It is defined via f. If $f: a \mapsto b$, then $f^{-1}: b \mapsto a$.

Caution: When f is a function from A to B, f^{-1} might not be a function from B to A.

Theorem. Suppose that A and B are finite sets and that $f:A\to B$ is a function. If f^{-1} is a function with domain B, then f is a bijection. Proof. Since f^{-1} is only defined when f is 1-to-1, we need only prove that f is onto. Suppose $b \in B$. By assumption, $f^{-1}(b) \in A$

Consequence: An alternative method for proving a bijection is:

exists and $f(f^{-1}(b)) = b$. So f is onto, and is a bijection.

- ▶ Find a rule $g: B \rightarrow A$ which always takes f(a) back to a.
- \blacktriangleright Verify that the domain of g is all of B.

Using the Inverse Function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even:
$$\{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\}$$
 odd: $\{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}$

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = egin{cases} S - \{1\} & ext{if } 1 \in S \ S \cup \{1\} & ext{if } 1
otin S \end{cases}.$$

- ▶ $f: A \rightarrow B$ is a well defined function from A to B (why?).
- ▶ f^{-1} exists and equals f (why?) and has domain B (why?).

Therefore, f is a bijection, proving the statement, as desired.

Eyebrow-Raising Consequence:
$$\sum_{k=0}^{\infty} (-1)^k {n \choose k} = 0.$$