Four Counting Questions (p. 2)

Here are four counting questions.
Q1. How many 8-character passwords are there using $A-Z, a-z, 0-9$?
Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?

Q3. How many Pick-6 lottery tickets are there? (Choose six numbers between 1-40.)

Q4. How many possible orders for a dozen donuts are there when the store has 30 varieties?

Think Write Pair Share: Order these from smallest to largest.

Counting words

Definition: A list or word is an ordered sequence of objects.
Definition: A k-list or k-word is a list of length k.

- A list or word is always ordered and a set is always unordered.

Counting words

Definition: A list or word is an ordered sequence of objects.
Definition: A k-list or k-word is a list of length k.

- A list or word is always ordered and a set is always unordered.

Question: How many lists have three entries where

- The first two entries can be either A or B.
- The last entry is either 5 or 6 .

Counting words

Definition: A list or word is an ordered sequence of objects.
Definition: A k-list or k-word is a list of length k.

- A list or word is always ordered and a set is always unordered.

Question: How many lists have three entries where

- The first two entries can be either A or B.
- The last entry is either 5 or 6 .

Answer: We can solve this using a tree diagram:

Counting words

Definition: A list or word is an ordered sequence of objects.
Definition: A k-list or k-word is a list of length k.

- A list or word is always ordered and a set is always unordered.

Question: How many lists have three entries where

- The first two entries can be either A or B.
- The last entry is either 5 or 6 .

Answer: We can solve this using a tree diagram:
Alternatively: Notice two independent choices for each character. Multiply $2 \cdot 2 \cdot 2=8$.

The Product Principle

This illustrates:
The product principle: When counting lists $\left(I_{1}, I_{2}, \ldots, I_{k}\right)$,
IF there are c_{1} choices for entry l_{1}, each leading to a different list,
AND IF there are c_{i} choices for entry l_{i}, no matter the choices made for l_{1} through l_{i-1}, each leading to a different list
THEN there are $c_{1} c_{2} \cdots c_{k}$ such lists.

The Product Principle

This illustrates:
The product principle: When counting lists $\left(I_{1}, I_{2}, \ldots, I_{k}\right)$,
IF there are c_{1} choices for entry l_{1}, each leading to a different list,
AND IF there are c_{i} choices for entry l_{i}, no matter the choices made for l_{1} through l_{i-1}, each leading to a different list
THEN there are $c_{1} c_{2} \cdots c_{k}$ such lists.

The Product Principle

This illustrates:
The product principle: When counting lists $\left(I_{1}, I_{2}, \ldots, I_{k}\right)$,
IF there are c_{1} choices for entry l_{1}, each leading to a different list,
AND IF there are c_{i} choices for entry l_{i}, no matter the choices made for l_{1} through l_{i-1}, each leading to a different list
THEN there are $c_{1} c_{2} \cdots c_{k}$ such lists.

Caution: The product principle seems simple, but we must be careful when we use it.

Lists WITH repetition

Q1. How many 8-character passwords are there using $A-Z, a-z, 0-9$?
Answer: Creating a word of length 8 , with ___ choices for each character. Therefore, the number of 8 -character passwords is \qquad .

$$
(=218,340,105,584,896)
$$

Lists WITH repetition

Q1. How many 8-character passwords are there using $A-Z, a-z, 0-9$?
Answer: Creating a word of length 8, with ___ choices for each character. Therefore, the number of 8 -character passwords is \qquad .

$$
(=218,340,105,584,896)
$$

In general, the number of words of length k that can be made from an alphabet of length n and where repetition is allowed is n^{k}

Application: Counting Subsets

Example. How many subsets of a set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ are there?

Application: Counting Subsets

Example. How many subsets of a set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ are there?
Strategy: "Try small problems, see a pattern."

Application: Counting Subsets

Example. How many subsets of a set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ are there?
Strategy: "Try small problems, see a pattern."

- $n=0: S=\emptyset$

Application: Counting Subsets

Example. How many subsets of a set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ are there?
Strategy: "Try small problems, see a pattern."

- $n=0: S=\emptyset \rightsquigarrow\{\emptyset\}$, size 1 .

Application: Counting Subsets

Example. How many subsets of a set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ are there?
Strategy: "Try small problems, see a pattern."

- $n=0: S=\emptyset \rightsquigarrow\{\emptyset\}$, size 1 .
- $n=1: S=\left\{s_{1}\right\}$

Application: Counting Subsets

Example. How many subsets of a set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ are there?
Strategy: "Try small problems, see a pattern."

- $n=0: S=\emptyset \rightsquigarrow\{\emptyset\}$, size 1 .
- $n=1: S=\left\{s_{1}\right\} \rightsquigarrow\left\{\emptyset,\left\{s_{1}\right\}\right\}$, size 2 .

Application: Counting Subsets

Example. How many subsets of a set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ are there?
Strategy: "Try small problems, see a pattern."

- $n=0: S=\emptyset \rightsquigarrow\{\emptyset\}$, size 1 .
- $n=1: S=\left\{s_{1}\right\} \rightsquigarrow\left\{\emptyset,\left\{s_{1}\right\}\right\}$, size 2 .
- $n=2: S=\left\{s_{1}, s_{2}\right\}$

Application: Counting Subsets

Example. How many subsets of a set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ are there?
Strategy: "Try small problems, see a pattern."

- $n=0: S=\emptyset \rightsquigarrow\{\emptyset\}$, size 1 .
- $n=1: S=\left\{s_{1}\right\} \rightsquigarrow\left\{\emptyset,\left\{s_{1}\right\}\right\}$, size 2 .
- $n=2: S=\left\{s_{1}, s_{2}\right\} \rightsquigarrow\left\{\emptyset,\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{1}, s_{2}\right\}\right\}$, size 4 .

Application: Counting Subsets

Example. How many subsets of a set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ are there?
Strategy: "Try small problems, see a pattern."

- $n=0: S=\emptyset \rightsquigarrow\{\emptyset\}$, size 1 .
- $n=1: S=\left\{s_{1}\right\} \rightsquigarrow\left\{\emptyset,\left\{s_{1}\right\}\right\}$, size 2 .
- $n=2: S=\left\{s_{1}, s_{2}\right\} \rightsquigarrow\left\{\emptyset,\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{1}, s_{2}\right\}\right\}$, size 4 .
- $n=3: S=\left\{s_{1}, s_{2}, s_{3}\right\} \rightsquigarrow\left\{\begin{array}{ccc}\emptyset, & \left\{s_{1}\right\}, & \left\{s_{2}\right\}, \\ \left\{s_{3}\right\}, & \left\{s_{1}, s_{3}\right\}, & \left\{s_{2}, s_{2}\right\}, \\ \left.s_{3}\right\}, & \left\{s_{1}, s_{2}, s_{3}\right\}\end{array}\right\}, 8$.

It appears that the number of subsets of S is \qquad .

Application: Counting Subsets

Example. How many subsets of a set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ are there?
Strategy: "Try small problems, see a pattern."

- $n=0: S=\emptyset \rightsquigarrow\{\emptyset\}$, size 1 .
- $n=1: S=\left\{s_{1}\right\} \rightsquigarrow\left\{\emptyset,\left\{s_{1}\right\}\right\}$, size 2 .
- $n=2: S=\left\{s_{1}, s_{2}\right\} \rightsquigarrow\left\{\emptyset,\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{1}, s_{2}\right\}\right\}$, size 4 .
- $n=3: S=\left\{s_{1}, s_{2}, s_{3}\right\} \rightsquigarrow\left\{\begin{array}{ccc}\emptyset, & \left\{s_{1}\right\}, & \left\{s_{2}\right\}, \\ \left\{s_{3}\right\}, & \left\{s_{1}, s_{3}\right\}, & \left\{s_{2}, s_{2}\right\}, \\ \left.s_{3}\right\}, & \left\{s_{1}, s_{2}, s_{3}\right\}\end{array}\right\}, 8$.

It appears that the number of subsets of S is \qquad .
This number also counts \qquad .

Application: Counting Subsets

Example. How many subsets of a set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ are there?
Strategy: "Try small problems, see a pattern."

- $n=0: S=\emptyset \rightsquigarrow\{\emptyset\}$, size 1 .
- $n=1: S=\left\{s_{1}\right\} \rightsquigarrow\left\{\emptyset,\left\{s_{1}\right\}\right\}$, size 2 .
- $n=2: S=\left\{s_{1}, s_{2}\right\} \rightsquigarrow\left\{\emptyset,\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{1}, s_{2}\right\}\right\}$, size 4 .
- $n=3: S=\left\{s_{1}, s_{2}, s_{3}\right\} \rightsquigarrow\left\{\begin{array}{ccc}\emptyset, & \left\{s_{1}\right\}, & \left\{s_{2}\right\}, \\ \left\{s_{3}\right\}, & \left\{s_{1}, s_{3}\right\}, & \left\{s_{2}, s_{2}\right\}, \\ \left.s_{3}\right\}, & \left\{s_{1}, s_{2}, s_{3}\right\}\end{array}\right\}, 8$.

It appears that the number of subsets of S is \qquad . (notation)

This number also counts \qquad .

We can label the subsets by whether or not they contain s_{i}.
For example, for $n=3$, we label the subsets $\left\{\begin{array}{l}000,100,010,110, \\ 001,101,011,111\end{array}\right\}$

Permutations

Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?

Answer: The number of choices for each lineup spot are:
\qquad

Permutations

Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?

Answer: The number of choices for each lineup spot are:

Multiplying gives that the number of lineups is $\quad \ldots=362,880$.

Permutations

Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?

Answer: The number of choices for each lineup spot are:

Multiplying gives that the number of lineups is $\quad \ldots=362,880$.
Definition: A permutation of an n-set S is an (ordered) list of all elements of S. There are n ! such permutations.

- "Permutation" always refers to a list without repetition.

Permutations

Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?

Answer: The number of choices for each lineup spot are:

Multiplying gives that the number of lineups is $\quad Z_{=}=362,880$.
Definition: A permutation of an n-set S is an (ordered) list of all elements of S. There are n ! such permutations.

Definition: A k-permutation of an n-set S is an (ordered) list of k distinct elements of S.

- "Permutation" always refers to a list without repetition.

Permutations

Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?

Answer: The number of choices for each lineup spot are:

Multiplying gives that the number of lineups is $\quad Z_{=}=362,880$.
Definition: A permutation of an n-set S is an (ordered) list of all elements of S. There are n ! such permutations.

Definition: A k-permutation of an n-set S is an (ordered) list of k distinct elements of S. How many are there?

- "Permutation" always refers to a list without repetition.

Lists WITHOUT repetition

Question: How many 8-character passwords are there using $A-Z$, $a-z, 0-9$, containing no repeated character?

OK: 2eas3FGS, 10293465 Not OK: 2kdjfng2, oOoOoOo0

Lists WITHOUT repetition

Question: How many 8-character passwords are there using $A-Z$, $a-z, 0-9$, containing no repeated character?
OK: 2eas3FGS, 10293465
Not OK: 2kdjfng2, oOoOoOo0

Answer: The number of choices for each character are:

Lists WITHOUT repetition

Question: How many 8-character passwords are there using $A-Z$, $a-z, 0-9$, containing no repeated character?
OK: 2eas3FGS, 10293465
Not OK: 2kdjfng2, oOoOoOo0

Answer: The number of choices for each character are:
for a total of $(62)_{8}=\frac{62!}{54!}$ passwords.

Lists WITHOUT repetition

Question: How many 8-character passwords are there using $A-Z$, $a-z, 0-9$, containing no repeated character?

OK: 2eas3FGS, 10293465 Not OK: 2kdjfng2, oOoOoOo0
Answer: The number of choices for each character are:
for a total of $(62)_{8}=\frac{62!}{54!}$ passwords.
In general, the number of words of length k that can be made from an alphabet of length n and where repetition is NOT allowed is $(n)_{k}$.

- That is, the number of k-permutations of an n-set is $(n)_{k}$.
- Special case: For n-permutations of an n-set: $n!$.

Notation

Some quantities appear frequently, so we use shorthand notation:

$$
\begin{aligned}
& \text { [n]:=\{1,2,,.,n\} >2}:=\text { set of all subsets of } S \\
& n!:=n \cdot(n-1) \cdot(n-2) \cdots 2 \cdot 1 \\
& >(n)_{k}:=n \cdot(n-1) \cdot(n-2) \cdots(n-k+1)=\frac{n!}{(n-k)!}
\end{aligned}
$$

* Leave answers to counting questions in terms of these quantities.
* Do NOT multiply out unless you are comparing values.

Notation

Some quantities appear frequently, so we use shorthand notation:

- $[n]:=\{1,2, \ldots, n\} \quad \mid 2^{S}:=$ set of all subsets of S
- $n!:=n \cdot(n-1) \cdot(n-2) \cdots 2 \cdot 1$
- $(n)_{k}:=n \cdot(n-1) \cdot(n-2) \cdots(n-k+1)=\frac{n!}{(n-k)!}$
- $\binom{n}{k}:=\frac{n!}{k!(n-k)!}=\frac{(n)_{k}}{k!}$
- $\left(\binom{n}{k}\right):=\binom{k+n-1}{k}$
* Leave answers to counting questions in terms of these quantities.
* Do NOT multiply out unless you are comparing values.

Counting subsets of a set

My question: In how many ways are there to choose a subset of k objects out of a set of n objects?

Counting subsets of a set

My question: In how many ways are there to choose a subset of k objects out of a set of n objects?
Your answer: $\binom{n}{k}$. " n choose k ".

Counting subsets of a set

My question: In how many ways are there to choose a subset of k objects out of a set of n objects?
Your answer: $\binom{n}{k}$. " n choose k ".
Question: In how many ways can you choose 4 objects out of 10 ?

Counting subsets of a set

My question: In how many ways are there to choose a subset of k objects out of a set of n objects?
Your answer: $\binom{n}{k}$. " n choose k ".
Question: In how many ways can you choose 4 objects out of 10 ? $\binom{10}{4}$

Counting subsets of a set

My question: In how many ways are there to choose a subset of k objects out of a set of n objects?
Your answer: $\binom{n}{k}$. " n choose k ".
Question: In how many ways can you choose 4 objects out of 10 ? $\binom{10}{4}$
Q3. How many Pick-6 lottery tickets are there? (Choose six numbers between 1-40.)

Counting subsets of a set

My question: In how many ways are there to choose a subset of k objects out of a set of n objects?
Your answer: $\binom{n}{k}$. " n choose k ".
Question: In how many ways can you choose 4 objects out of 10 ? $\binom{10}{4}$
Q3. How many Pick-6 lottery tickets are there? (Choose six numbers between 1-40.)

Answer: $\binom{40}{6}$

Counting subsets of a set

My question: In how many ways are there to choose a subset of k objects out of a set of n objects?
Your answer: $\binom{n}{k}$. " n choose k ".
Question: In how many ways can you choose 4 objects out of 10 ? $\binom{10}{4}$
Q3. How many Pick-6 lottery tickets are there?
(Choose six numbers between 1-40.)
Answer: $\binom{40}{6}=3,838,380$.

- $\binom{n}{k}$ is called a binomial coefficient.
- Alternate phrasing: How many k-subsets of an n-set are there?
- The individual objects we are counting are unordered. They are subsets, not lists.

A formula for $\binom{n}{k}$

You may know that $\binom{n}{k}=\frac{n!}{k!(n-k)!}$
But why?

A formula for $\binom{n}{k}$

You may know that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{1}{k!}(n)_{k} . \quad$ But why?
Let's rearrange it.
And prove it!
$(n)_{k}=\binom{n}{k} k!$

A formula for $\binom{n}{k}$

You may know that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{1}{k!}(n)_{k} . \quad$ But why?
Let's rearrange it. And prove it!

$$
(n)_{k}=\binom{n}{k} k!
$$

We ask the question:
"In how many ways are there to create a k-list of an n-set?"
LHS:

RHS:

A formula for $\binom{n}{k}$

You may know that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{1}{k!}(n)_{k} . \quad$ But why?
Let's rearrange it. And prove it!

$$
(n)_{k}=\binom{n}{k} k!
$$

We ask the question:
"In how many ways are there to create a k-list of an n-set?"
LHS:

RHS:

Since we counted the same quantity twice, they must be equal!

Counting Multisets

Definition: A multiset is an unordered collection of elements where repetition is allowed.

Counting Multisets

Definition: A multiset is an unordered collection of elements where repetition is allowed.

- Example. $\{a, a, b, d\}$ is a multiset.

Counting Multisets

Definition: A multiset is an unordered collection of elements where repetition is allowed.

- Example. $\{a, a, b, d\}$ is a multiset.

Definition: We say M is a multisubset of a set (or multiset) S if every element of M is an element of S.

- Example. $M=\{a, a, b, d\}$ is a multisubset of $S=\{a, b, c, d\}$.

Counting Multisets

Definition: A multiset is an unordered collection of elements where repetition is allowed.

- Example. $\{a, a, b, d\}$ is a multiset.

Definition: We say M is a multisubset of a set (or multiset) S if every element of M is an element of S.

- Example. $M=\{a, a, b, d\}$ is a multisubset of $S=\{a, b, c, d\}$.

Think Write Pair Share: Enumerate all multisubsets of [3].
[In other words, list them all or completely describe the list.]
Answer:

Counting Multisets

Definition: A multiset is an unordered collection of elements where repetition is allowed.

- Example. $\{a, a, b, d\}$ is a multiset.

Definition: We say M is a multisubset of a set (or multiset) S if every element of M is an element of S.

- Example. $M=\{a, a, b, d\}$ is a multisubset of $S=\{a, b, c, d\}$.

Think Write Pair Share: Enumerate all multisubsets of [3].
[In other words, list them all or completely describe the list.]
Answer:

How would you describe a k-multisubset of $[n]$?

Stars and Bars

Question: How many k-multisets can be made from an n-set?

- is the same as -

Question: How many ways are there to place k indistinguishable balls into n distinguishable bins?

Stars and Bars

Question: How many k-multisets can be made from an n-set?

- is the same as -

Question: How many ways are there to place k indistinguishable balls into n distinguishable bins?

$$
\left\{a^{2}, b^{0}, c^{3}, d^{1}\right\} \begin{aligned}
& n=4 \\
& k=6
\end{aligned}
$$

Stars and Bars

Question: How many k-multisets can be made from an n-set?

- is the same as -

Question: How many ways are there to place k indistinguishable balls into n distinguishable bins?

$$
\left\{a^{2}, b^{0}, c^{3}, d^{1}\right\} \begin{aligned}
& n=4 \\
& k=6
\end{aligned}
$$

Stars and Bars

Question: How many k-multisets can be made from an n-set?

- is the same as -

Question: How many ways are there to place k indistinguishable balls into n distinguishable bins?

$$
\left\{a^{2}, b^{0}, c^{3}, d^{1}\right\} \begin{aligned}
& n=4 \\
& k=6
\end{aligned}
$$

Stars and Bars

Question: How many k-multisets can be made from an n-set?

- is the same as -

Question: How many ways are there to place k indistinguishable balls into n distinguishable bins?

- is the same as -

Question: How many $\{*, \mid\}$-words contain k stars and ($n-1$) bars?

$$
\left\{a^{2}, b^{0}, c^{3}, d^{1}\right\} \begin{aligned}
& n=4 \\
& k=6
\end{aligned}
$$

Stars and Bars

Question: How many k-multisets can be made from an n-set?

- is the same as -

Question: How many ways are there to place k indistinguishable balls into n distinguishable bins?

- is the same as -

Question: How many $\{*, \mid\}$-words contain k stars and ($n-1$) bars?

$$
\left\{a^{2}, b^{0}, c^{3}, d^{1}\right\} \begin{aligned}
& n=4 \\
& k=6
\end{aligned}
$$

$$
* *||* * *| *
$$

Stars and Bars

Question: How many k-multisets can be made from an n-set?

- is the same as -

Question: How many ways are there to place k indistinguishable balls into n distinguishable bins?

- is the same as -

Question: How many $\{*, \mid\}$-words contain k stars and ($n-1$) bars?

$$
* *||* * *| *
$$

- which we can count by: -

Question: How many ways are there to choose k star positions out of $k+n-1$?

$$
\left\{a^{2}, b^{0}, c^{3}, d^{1}\right\} \begin{aligned}
& n=4 \\
& k=6
\end{aligned}
$$

Stars and Bars

Question: How many k-multisets can be made from an n-set?

- is the same as -

Question: How many ways are there to place k indistinguishable balls into n distinguishable bins?

- is the same as -

Question: How many $\{*, \mid\}$-words contain k stars and ($n-1$) bars?

$$
* *||* * *| *
$$

- which we can count by: -

Question: How many ways are there to choose k star positions out of $k+n-1$?

Answering Q1-Q4

Q4. How many possible orders for a dozen donuts are there when the store has 30 varieties?

Answering Q1-Q4

Q4. How many possible orders for a dozen donuts are there when the store has 30 varieties?

Answer: $(())=()=$

Answering Q1-Q4

Q4. How many possible orders for a dozen donuts are there when the store has 30 varieties?

Answer: ($(\quad)=(\quad)=7,898,654,920$.

Answering Q1-Q4

Q4. How many possible orders for a dozen donuts are there when the store has 30 varieties?

Answer: $(())=(\quad)=7,898,654,920$.
Correct order:
Q2. Order 9 baseball players (9!)
362,880
Q3. Pick-6; numbers 1-40 $\binom{40}{6} \quad 3,838,380$
Q4. 12 donuts from $\left.30 \quad\binom{30}{12}\right)$
7,898,654,920
Q1. 8-character passwords $\left(62^{8}\right)$
218,340,105,584,896

Summary

	order matters (choose a list)	order doesn't matter (choose a set)
repetition allowed		
repetition not allowed		

Summary

	order matters (choose a list)	order doesn't matter (choose a set)
repetition allowed	n^{k}	
repetition not allowed		

Summary

	order matters (choose a list)	order doesn't matter (choose a set)
repetition allowed	n^{k}	
repetition not allowed	$(n)_{k}$	

Summary

	order matters (choose a list)	order doesn't matter (choose a set)
repetition allowed	n^{k}	
repetition not allowed	$(n)_{k}$	$\binom{n}{k}$

Summary

	order matters (choose a list)	order doesn't matter (choose a set)
repetition allowed	n^{k}	$\left(\binom{n}{k}\right)$
repetition not allowed	$(n)_{k}$	$\binom{n}{k}$

