- 1. (a) (5 pts) Give a precise definition of a combinatorial statistic.
 - (b) (5 pts) Let \mathcal{T}_6 be the set of all unlabeled trees on six vertices and let $t_6 = |\mathcal{T}_6|$. Determine t_6 by drawing every tree $T \in \mathcal{T}_6$ and verifying that there are no others.
 - (c) (5 pts) We can define the combinatorial statistic $\Delta(T)$ to be the vertex of largest degree in a tree T. Write down the expression $\sum_{T \in \mathcal{T}_6} q^{\Delta(T)}$ and show that this is a q-analog of t_6 .
- 2. (10 pts) Let a, b, and c be nonzero real numbers. Find the coefficient of x^k in $\frac{a}{b+cr}$.
- 3. (10 pts) Give the generating function for partitions of n where all parts that appear occur at least two times. Write your answer as an infinite product using Π notation.
 [For example, λ = 6663311 is valid but λ = 553222 is not because 3 occurs only once.]
- 4. (10 pts) You have infinitely many squares of colors {red, blue, green} and dominoes of colors {orange, yellow, indigo, purple}. Let h_n be the number of ways in which we can cover an $n \times 1$ board with these colorful tiles. Find a linear recurrence that $\{h_n\}$ satisfies (including initial conditions) and give the generating function $h(x) = \sum_{n>0} h_n x^n$.
- 5. (10 pts) Below are **TWO** combinatorial interpretations for the Catalan number C_n . Choose **ONE** of these combinatorial interpretations and **prove** that it is indeed counted by the Catalan numbers.
 - (a) The number of rooted trees with n vertices. [See the figure below.]
 [Note: Unlike the binary trees we discussed in class, we allow every vertex to have arbitrarily many children—there is no such thing as a "left child" nor "right child".]

(b) The number of ways to stack coins in the plane where the bottom row consists of n consecutive coins. [See the figure below.]

[Bonus: Prove that the other combinatorial interpretation is also counted by the Catalan numbers.]