1. (a) (5 pts) Give a precise definition of a combinatorial statistic.
(b) (5 pts) Let \mathcal{T}_{6} be the set of all unlabeled trees on six vertices and let $t_{6}=\left|\mathcal{T}_{6}\right|$.

Determine t_{6} by drawing every tree $T \in \mathcal{T}_{6}$ and verifying that there are no others.
(c) (5 pts) We can define the combinatorial statistic $\Delta(T)$ to be the vertex of largest degree in a tree T. Write down the expression $\sum_{T \in \mathcal{T}_{6}} q^{\Delta(T)}$ and show that this is a q-analog of t_{6}.
2. (10 pts) Let a, b, and c be nonzero real numbers. Find the coefficient of x^{k} in $\frac{a}{b+c x}$.
3. (10 pts) Give the generating function for partitions of n where all parts that appear occur at least two times. Write your answer as an infinite product using \prod notation. [For example, $\lambda=6663311$ is valid but $\lambda=553222$ is not because 3 occurs only once.]
4. (10 pts) You have infinitely many squares of colors \{red, blue, green\} and dominoes of colors \{orange, yellow, indigo, purple\}. Let h_{n} be the number of ways in which we can cover an $n \times 1$ board with these colorful tiles. Find a linear recurrence that $\left\{h_{n}\right\}$ satisfies (including initial conditions) and give the generating function $h(x)=\sum_{n \geq 0} h_{n} x^{n}$.
5. (10 pts) Below are TWO combinatorial interpretations for the Catalan number C_{n}.

Choose ONE of these combinatorial interpretations and prove that it is indeed counted by the Catalan numbers.
(a) The number of rooted trees with n vertices. [See the figure below.] [Note: Unlike the binary trees we discussed in class, we allow every vertex to have arbitrarily many children-there is no such thing as a "left child" nor "right child".]

(b) The number of ways to stack coins in the plane where the bottom row consists of n consecutive coins. [See the figure below.]

[Bonus: Prove that the other combinatorial interpretation is also counted by the Catalan numbers.]

