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Questions involving combinatorial statistics:

� What is the distribution of the statistics?

� What is the average size of an object in the set?

� Which statistics have the same distribution?
� Insight into their structure.
� Provides non-trivial bijections in the set?

A especially rich playground involves permutation statistics.

Representations of permutations

One-line notation: π = 416 2 5 3 Cycle notation: π = (1 4 2)(3 6)(5)

String diagram:
1
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2

1

3
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2

5

5

6

3

(only two crossings at a time)

Matrix-like diagram:
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Definition: Let π = π1π2 · · · πn be a permutation.

A descent is a position i such that πi > πi+1.

Define des(π) to be the number of descents in π.
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Question: How many n-permutations have d descents?
des(12) = 0 des(123) = des(213) = des(312) =
des(21) = 1 des(132) = des(231) = des(321) =

n\d 0 1 2 3 4

1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1

What are the possible values for des(π)?

Note the symmetry. If π has d de-
scents, its reverse π̂ has descents.

These are the Eulerian numbers.
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Eulerian Numbers

Definition: An,k = number of n-permutations with k − 1 descents.

Theorem: An,k+1 = (k + 1)An−1,k+1 + (n − k)An−1,k
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Proof. Ask: How many n-permutations have k descents?

LHS: An,k+1, of course!

RHS: Insert the number n into an (n − 1)-permutation.
When n is inserted into an (n − 1)-permutation with d descents,
the resulting n-permutation either has

� d descents (If n inserted in a position that is a descent or at end.)

� d + 1 descents (If n inserted in a position that is not a descent.)

Conclusion: An n-perm with k descents can arise by inserting n:

� into a perm with k existing descents in (k + 1)An−1,k+1 ways.

� into a perm with k − 1 existing descents in (n − k)An−1,k ways.
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Eulerian Numbers

The initial conditions
An,1 = 1 and An,n = 1 for all n

along with the recurrence
An,k+1 =

(k+1)An−1,k+1+(n−k)An−1,k

allow us to fill the chart:

n An,1 An,2 An,3 An,4 An,5 An,6

1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 1
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along with the recurrence
An,k+1 =

(k+1)An−1,k+1+(n−k)An−1,k

allow us to fill the chart:

n An,1 An,2 An,3 An,4 An,5 An,6

1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 1

Fact: The Eulerian numbers satisfy the following identities.

An,k =
∑k

i=0(−1)i
(n+1

i

)
(k − i)n.

S(n, r) = 1
r !

∑r
k=0 An,k

(n−k
r−k

)
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Inversion statistic

Definition: Let π = π1π2 · · · πn be a permutation.
An inversion is a pair i < j such that πi > πj .

Define inv(π) as the number of inversions in π.
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Define inv(π) as the number of inversions in π.
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inv(12) = 0 inv(123) = inv(213) = inv(312) =
inv(21) = 1 inv(132) = inv(231) = inv(321) =

n\i 0 1 2 3 4 5 6

1 1
2 1 1
3 1 2 2 1
4 1 3 5 6 5 3 1

What are the possible values for
inv(π)?

The inversion number is a good
way to count how “far away” a
permutation is from the identity.
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Definition: bn,k = number of n-permutations with k inversions.

Theorem: Let k ≤ n. Then bn+1,k = bn+1,k−1 + bn,k

Proof. Ask: How many (n + 1)-permutations have k descents?

LHS: bn+1,k , evidently!

RHS: Condition on the position of (n + 1).
The (n + 1)-perms with k descents and (n + 1) in the last position
are in bijection with , and are counted by .

If (n + 1) is not in the last position, switch it with its right neighbor.
We recover an (n + 1)-permutation with k − 1 descents with the
added condition that .

Since k ≤ n, then every (n + 1)-permutation with k − 1 inversions
satisfy this condition, (WHY?)

We conclude that there are bn+1,k−1 ways in which this can happen.
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Define maj(π), the major index of π, to be sum of the descents of π.

[Named after Major Percy MacMahon. (British army, early 1900’s)]
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Define maj(π), the major index of π, to be sum of the descents of π.
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Example. When π = 416253, maj(π) = 9 since
the descents of π are in positions 1, 3, and 5.

maj(12) = 0 maj(123) = maj(213) = maj(312) =
maj(21) = 1 maj(132) = maj(231) = maj(321) =

n\m 0 1 2 3 4 5 6

1 1
2 1 1
3 1 2 2 1
4 1 3 5 6 5 3 1

What are the possible values for
maj(π)?

The distribution of maj(π)
IS THE SAME AS

the distribution of inv(π)!

A statistic that has the same distribution as inv is called Mahonian.
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There’s always more to learn!!!

Theorem: inv and maj are equidistributed on Sn.

Proofs exist using generating functions and using bijections.

� Find a bijection f : Sn → Sn such that maj(π) = inv(f (π)).
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