Combinatorial statistics

Given a set of combinatorial objects \mathcal{A}, a combinatorial statistic is an integer given to every element of the set.

In other words, it is a function $\mathcal{A} \rightarrow \mathbb{Z}_{\geq 0}$.

Combinatorial statistics

Given a set of combinatorial objects \mathcal{A}, a combinatorial statistic is an integer given to every element of the set.
In other words, it is a function $\mathcal{A} \rightarrow \mathbb{Z}_{\geq 0}$.
Example. Let \mathcal{S} be the set of subsets of $\{1,2,3\}$.
The cardinality of a set is a combinatorial statistic on \mathcal{S}.

$$
\begin{array}{cccc}
|\emptyset|=0 & |\{1\}|=1 & |\{2\}|=1 & |\{3\}|=1 \\
|\{1,2\}|=2 & |\{1,3\}|=2 & |\{2,3\}|=2 & |\{1,2,3\}|=3
\end{array}
$$

Combinatorial statistics

Given a set of combinatorial objects \mathcal{A}, a combinatorial statistic is an integer given to every element of the set.

In other words, it is a function $\mathcal{A} \rightarrow \mathbb{Z}_{\geq 0}$.
Example. Let \mathcal{S} be the set of subsets of $\{1,2,3\}$.
The cardinality of a set is a combinatorial statistic on \mathcal{S}.

$$
\begin{array}{cccc}
|\emptyset|=0 & |\{1\}|=1 & |\{2\}|=1 & |\{3\}|=1 \\
|\{1,2\}|=2 & |\{1,3\}|=2 & |\{2,3\}|=2 & |\{1,2,3\}|=3
\end{array}
$$

Combinatorial statistics provide a refinement of counting. less information

Combinatorial statistics

Given a set of combinatorial objects \mathcal{A}, a combinatorial statistic is an integer given to every element of the set.

In other words, it is a function $\mathcal{A} \rightarrow \mathbb{Z}_{\geq 0}$.
Example. Let \mathcal{S} be the set of subsets of $\{1,2,3\}$.
The cardinality of a set is a combinatorial statistic on \mathcal{S}.

$$
\begin{array}{cccc}
|\emptyset|=0 & |\{1\}|=1 & |\{2\}|=1 & |\{3\}|=1 \\
|\{1,2\}|=2 & |\{1,3\}|=2 & |\{2,3\}|=2 & |\{1,2,3\}|=3
\end{array}
$$

Combinatorial statistics provide a refinement of counting.
less information
more information

counting

8

$$
\begin{array}{l|l|l|l}
0 & 1 & 2 & 3 \\
\hline 1 & 3 & 3 & 1
\end{array}
$$

More statistics

Questions involving combinatorial statistics:

- What is the distribution of the statistics?

More statistics

Questions involving combinatorial statistics:

- What is the distribution of the statistics?
- What is the average size of an object in the set?

More statistics

Questions involving combinatorial statistics:

- What is the distribution of the statistics?
- What is the average size of an object in the set?
- Which statistics have the same distribution?
- Insight into their structure.
- Provides non-trivial bijections in the set?

More statistics

Questions involving combinatorial statistics:

- What is the distribution of the statistics?
- What is the average size of an object in the set?
- Which statistics have the same distribution?
- Insight into their structure.
- Provides non-trivial bijections in the set?

A especially rich playground involves permutation statistics.
Representations of permutations
One-line notation: $\pi=416253$ Cycle notation: $\pi=(142)(36)(5)$

More statistics

Questions involving combinatorial statistics:

- What is the distribution of the statistics?
- What is the average size of an object in the set?
- Which statistics have the same distribution?
- Insight into their structure.
- Provides non-trivial bijections in the set?

A especially rich playground involves permutation statistics.
Representations of permutations
One-line notation: $\pi=416253$ Cycle notation: $\pi=(142)(36)(5)$

String diagram:

(only two crossings at a time)

Matrix-like diagram:

Descent statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation.
A descent is a position i such that $\pi_{i}>\pi_{i+1}$.
Define $\operatorname{des}(\pi)$ to be the number of descents in π.

Descent statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. A descent is a position i such that $\pi_{i}>\pi_{i+1}$.
Define $\operatorname{des}(\pi)$ to be the number of descents in π.

Example. When $\pi=416253$, $\operatorname{des}(\pi)=3$ since $4 \backslash 1,6 \backslash 2,5 \backslash 3$.

Descent statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. A descent is a position i such that $\pi_{i}>\pi_{i+1}$.
Define $\operatorname{des}(\pi)$ to be the number of descents in π.

Example. When $\pi=416253$, $\operatorname{des}(\pi)=3$ since $4 \backslash 1,6 \backslash 2,5 \backslash 3$.
Question: How many n-permutations have d descents?

$$
\begin{array}{llll}
\operatorname{des}(12)=0 & \operatorname{des}(123)=_{-} & \operatorname{des}(213)=_{-} & \operatorname{des}(312)=_{-} \\
\operatorname{des}(21)=1 & \operatorname{des}(132)=_{-} & \operatorname{des}(231)=_{-} & \operatorname{des}(321)={ }_{-}
\end{array}
$$

Descent statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. A descent is a position i such that $\pi_{i}>\pi_{i+1}$.
Define $\operatorname{des}(\pi)$ to be the number of descents in π.

Example. When $\pi=416253, \operatorname{des}(\pi)=3$ since $4 \backslash 1,6 \backslash 2,5 \backslash 3$.
Question: How many n-permutations have d descents? $\begin{array}{llll}\operatorname{des}(12)=0 & \operatorname{des}(123)==_{-} & \operatorname{des}(213)=Z_{-} & \operatorname{des}(312)==_{-} \\ \operatorname{des}(21)=1 & \operatorname{des}(132)=_{-} & \operatorname{des}(231)=Z_{-} & \operatorname{des}(321)==_{-}\end{array}$

$n \backslash d$	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for $\operatorname{des}(\pi)$?

Descent statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. A descent is a position i such that $\pi_{i}>\pi_{i+1}$.
Define $\operatorname{des}(\pi)$ to be the number of descents in π.

Example. When $\pi=416253$, $\operatorname{des}(\pi)=3$ since $4 \backslash 1,6 \backslash 2,5 \backslash 3$.
Question: How many n-permutations have d descents? $\begin{array}{llll}\operatorname{des}(12)=0 & \operatorname{des}(123)==_{-} & \operatorname{des}(213)=Z_{-} & \operatorname{des}(312)==_{-} \\ \operatorname{des}(21)=1 & \operatorname{des}(132)=_{-} & \operatorname{des}(231)=Z_{-} & \operatorname{des}(321)==_{-}\end{array}$

$n \backslash d$	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for $\operatorname{des}(\pi)$? Note the symmetry. If π has d descents, its reverse $\hat{\pi}$ has ___ descents.

Descent statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. A descent is a position i such that $\pi_{i}>\pi_{i+1}$.
Define $\operatorname{des}(\pi)$ to be the number of descents in π.

Example. When $\pi=416253$, $\operatorname{des}(\pi)=3$ since $4 \backslash 1,6 \backslash 2,5 \backslash 3$.
Question: How many n-permutations have d descents? $\begin{array}{llll}\operatorname{des}(12)=0 & \operatorname{des}(123)==_{-} & \operatorname{des}(213)=Z_{-} & \operatorname{des}(312)==_{-} \\ \operatorname{des}(21)=1 & \operatorname{des}(132)=_{-} & \operatorname{des}(231)=Z_{-} & \operatorname{des}(321)==_{-}\end{array}$

$n \backslash d$	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for $\operatorname{des}(\pi)$? Note the symmetry. If π has d descents, its reverse $\hat{\pi}$ has ___ descents. These are the Eulerian numbers.

Eulerian Numbers

Definition: $A_{n, k}=$ number of n-permutations with $k-1$ descents.
Theorem: $A_{n, k+1}=(k+1) A_{n-1, k+1}+(n-k) A_{n-1, k}$

Eulerian Numbers

Definition: $A_{n, k}=$ number of n-permutations with $k-1$ descents.
Theorem: $A_{n, k+1}=(k+1) A_{n-1, k+1}+(n-k) A_{n-1, k}$
Proof. Ask: How many n-permutations have k descents?
LHS: $A_{n, k+1}$, of course!

Eulerian Numbers

Definition: $A_{n, k}=$ number of n-permutations with $k-1$ descents.
Theorem: $A_{n, k+1}=(k+1) A_{n-1, k+1}+(n-k) A_{n-1, k}$
Proof. Ask: How many n-permutations have k descents?
LHS: $A_{n, k+1}$, of course!
RHS: Insert the number n into an ($n-1$)-permutation.
When n is inserted into an $(n-1)$-permutation with d descents, the resulting n-permutation either has

- descents (If n inserted in a position that is a descent or at end.)
- $d+1$ descents (If n inserted in a position that is not a descent.)

Eulerian Numbers

Definition: $A_{n, k}=$ number of n-permutations with $k-1$ descents.
Theorem: $A_{n, k+1}=(k+1) A_{n-1, k+1}+(n-k) A_{n-1, k}$
Proof. Ask: How many n-permutations have k descents?
LHS: $A_{n, k+1}$, of course!
RHS: Insert the number n into an ($n-1$)-permutation.
When n is inserted into an $(n-1)$-permutation with d descents, the resulting n-permutation either has

- descents (If n inserted in a position that is a descent or at end.)
- $d+1$ descents (If n inserted in a position that is not a descent.)

Conclusion: An n-perm with k descents can arise by inserting n :

- into a perm with k existing descents in $(k+1) A_{n-1, k+1}$ ways.
- into a perm with $k-1$ existing descents in $(n-k) A_{n-1, k}$ ways.

Eulerian Numbers

The initial conditions
$A_{n, 1}=1$ and $A_{n, n}=1$ for all n along with the recurrence
$A_{n, k+1}=$
$(k+1) A_{n-1, k+1}+(n-k) A_{n-1, k}$ allow us to fill the chart:

n	$A_{n, 1}$	$A_{n, 2}$	$A_{n, 3}$	$A_{n, 4}$	$A_{n, 5}$	$A_{n, 6}$
1	1					
2	1	1				
3	1	4	1			
4	1	11	11	1		
5	$\mathbf{1}$	26	66	26	1	
6	1	57				1

Eulerian Numbers

The initial conditions
$A_{n, 1}=1$ and $A_{n, n}=1$ for all n along with the recurrence
$A_{n, k+1}=$
$(k+1) A_{n-1, k+1}+(n-k) A_{n-1, k}$
allow us to fill the chart:

n	$A_{n, 1}$	$A_{n, 2}$	$A_{n, 3}$	$A_{n, 4}$	$A_{n, 5}$	$A_{n, 6}$
1	1					
2	1	1				
3	1	4	1			
4	1	11	11	1		
5	1	26	66	26	1	
6	1	57				1

Fact: The Eulerian numbers satisfy the following identities.

$$
\begin{gathered}
A_{n, k}=\sum_{i=0}^{k}(-1)^{i}\binom{n+1}{i}(k-i)^{n} . \\
S(n, r)=\frac{1}{r!} \sum_{k=0}^{r} A_{n, k}\binom{n-k}{r-k}
\end{gathered}
$$

Inversion statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation.
An inversion is a pair $i<j$ such that $\pi_{i}>\pi_{j}$.
Define $\operatorname{inv}(\pi)$ as the number of inversions in π.

Inversion statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation.
An inversion is a pair $i<j$ such that $\pi_{i}>\pi_{j}$.
Define $\operatorname{inv}(\pi)$ as the number of inversions in π.
Example. When $\pi=416253, \operatorname{inv}(\pi)=7$ since $4>1,4>2,4>3,6>2,6>5,6>3,5>3$.

Inversion statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. An inversion is a pair $i<j$ such that $\pi_{i}>\pi_{j}$.
 Define $\operatorname{inv}(\pi)$ as the number of inversions in π.

Example. When $\pi=416253, \operatorname{inv}(\pi)=7$ since $4>1,4>2,4>3,6>2,6>5,6>3,5>3$. In a string diagram $\operatorname{inv}(\pi)=$ number of crossings. In a matrix diagram $\operatorname{inv}(\pi)$, draw Rothe diagram:

Inversion statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. An inversion is a pair $i<j$ such that $\pi_{i}>\pi_{j}$.

Define $\operatorname{inv}(\pi)$ as the number of inversions in π.
Example. When $\pi=416253, \operatorname{inv}(\pi)=7$ since $4>1,4>2,4>3,6>2,6>5,6>3,5>3$. In a string diagram $\operatorname{inv}(\pi)=$ number of crossings. In a matrix diagram $\operatorname{inv}(\pi)$, draw Rothe diagram: $\begin{array}{lll}\operatorname{inv}(12)=0 & \operatorname{inv}(123)==_{-} & \operatorname{inv}(213)==_{-} \\ \operatorname{inv}(21)=1 & \operatorname{inv}(132)==_{-} & \operatorname{inv}(231)={ }_{-}\end{array}$

$\operatorname{inv}(312)=$ _
$\operatorname{inv}(321)=$ _
What are the possible values for $\operatorname{inv}(\pi)$?

Inversion statistic

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation. An inversion is a pair $i<j$ such that $\pi_{i}>\pi_{j}$.

Define $\operatorname{inv}(\pi)$ as the number of inversions in π.
Example. When $\pi=416253, \operatorname{inv}(\pi)=7$ since $4>1,4>2,4>3,6>2,6>5,6>3,5>3$. In a string diagram $\operatorname{inv}(\pi)=$ number of crossings. In a matrix diagram $\operatorname{inv}(\pi)$, draw Rothe diagram: $\begin{array}{lll}\operatorname{inv}(12)=0 & \operatorname{inv}(123)==_{-} & \operatorname{inv}(213)==_{-} \\ \operatorname{inv}(21)=1 & \operatorname{inv}(132)=Z_{-} & \operatorname{inv}(231)={ }_{-}\end{array}$

$\operatorname{inv}(312)=$ _
$\operatorname{inv}(321)=$ _
What are the possible values for $\operatorname{inv}(\pi)$?

The inversion number is a good way to count how "far away" a permutation is from the identity.

Gaussian polynomials

Definition: $b_{n, k}=$ number of n-permutations with k inversions.
Theorem: Let $k \leq n$. Then $b_{n+1, k}=b_{n+1, k-1}+b_{n, k}$

Gaussian polynomials

Definition: $b_{n, k}=$ number of n-permutations with k inversions.
Theorem: Let $k \leq n$. Then $b_{n+1, k}=b_{n+1, k-1}+b_{n, k}$
Proof. Ask: How many $(n+1)$-permutations have k descents?
LHS: $b_{n+1, k}$, evidently!
RHS: Condition on the position of $(n+1)$.
The $(n+1)$-perms with k descents and $(n+1)$ in the last position are in bijection with

Gaussian polynomials

Definition: $b_{n, k}=$ number of n-permutations with k inversions.
Theorem: Let $k \leq n$. Then $b_{n+1, k}=b_{n+1, k-1}+b_{n, k}$
Proof. Ask: How many $(n+1)$-permutations have k descents?
LHS: $b_{n+1, k}$, evidently!
RHS: Condition on the position of $(n+1)$.
The $(n+1)$-perms with k descents and $(n+1)$ in the last position are in bijection with , and are counted by

Gaussian polynomials

Definition: $b_{n, k}=$ number of n-permutations with k inversions.
Theorem: Let $k \leq n$. Then $b_{n+1, k}=b_{n+1, k-1}+b_{n, k}$
Proof. Ask: How many $(n+1)$-permutations have k descents?
LHS: $b_{n+1, k}$, evidently!
RHS: Condition on the position of $(n+1)$.
The $(n+1)$-perms with k descents and $(n+1)$ in the last position are in bijection with \qquad , and are counted by If $(n+1)$ is not in the last position, switch it with its right neighbor. We recover an ($n+1$)-permutation with $k-1$ descents with the added condition that \qquad

Gaussian polynomials

Definition: $b_{n, k}=$ number of n-permutations with k inversions.
Theorem: Let $k \leq n$. Then $b_{n+1, k}=b_{n+1, k-1}+b_{n, k}$
Proof. Ask: How many $(n+1)$-permutations have k descents?
LHS: $b_{n+1, k}$, evidently!
RHS: Condition on the position of $(n+1)$.
The $(n+1)$-perms with k descents and $(n+1)$ in the last position are in bijection with , and are counted by If $(n+1)$ is not in the last position, switch it with its right neighbor. We recover an ($n+1$)-permutation with $k-1$ descents with the added condition that \qquad
Since $k \leq n$, then every $(n+1)$-permutation with $k-1$ inversions satisfy this condition, (WHY?)

Gaussian polynomials

Definition: $b_{n, k}=$ number of n-permutations with k inversions.
Theorem: Let $k \leq n$. Then $b_{n+1, k}=b_{n+1, k-1}+b_{n, k}$
Proof. Ask: How many $(n+1)$-permutations have k descents?
LHS: $b_{n+1, k}$, evidently!
RHS: Condition on the position of $(n+1)$.
The $(n+1)$-perms with k descents and $(n+1)$ in the last position are in bijection with \qquad , and are counted by
If $(n+1)$ is not in the last position, switch it with its right neighbor.
We recover an ($n+1$)-permutation with $k-1$ descents with the added condition that \qquad
Since $k \leq n$, then every $(n+1)$-permutation with $k-1$ inversions satisfy this condition, (WHY?)
We conclude that there are $b_{n+1, k-1}$ ways in which this can happen.

Major index

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation.
Define $\operatorname{maj}(\pi)$, the major index of π, to be sum of the descents of π.
[Named after Major Percy MacMahon. (British army, early 1900's)]

Major index

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation.
Define $\operatorname{maj}(\pi)$, the major index of π, to be sum of the descents of π.
[Named after Major Percy MacMahon. (British army, early 1900's)]
Example. When $\pi=416253, \operatorname{maj}(\pi)=9$ since the descents of π are in positions 1,3 , and 5 .

Major index

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation.
Define $\operatorname{maj}(\pi)$, the major index of π, to be sum of the descents of π. [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi=416253, \operatorname{maj}(\pi)=9$ since the descents of π are in positions 1,3 , and 5 .

$$
\begin{array}{llll}
\operatorname{maj}(12)=0 & \operatorname{maj}(123)=_{-} & \operatorname{maj}(213)=_{-} & \operatorname{maj}(312)==_{-} \\
\operatorname{maj}(21)=1 & \operatorname{maj}(132)=_{-} & \operatorname{maj}(231)=_{-} & \operatorname{maj}(321)==_{-}
\end{array}
$$

Major index

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation.
Define $\operatorname{maj}(\pi)$, the major index of π, to be sum of the descents of π. [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi=416253, \operatorname{maj}(\pi)=9$ since the descents of π are in positions 1,3 , and 5 .

$$
\begin{array}{llll}
\operatorname{maj}(12)=0 & \operatorname{maj}(123)=_{-} & \operatorname{maj}(213)=_{-} & \operatorname{maj}(312)=_{-} \\
\operatorname{maj}(21)=1 & \operatorname{maj}(132)=_{-} & \operatorname{maj}(231)=_{-} & \operatorname{maj}(321)==_{-}
\end{array}
$$

$n \backslash m$	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $\operatorname{maj}(\pi)$?

The distribution of $\operatorname{maj}(\pi)$
IS THE SAME AS the distribution of $\operatorname{inv}(\pi)$!

Major index

Definition: Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation.
Define $\operatorname{maj}(\pi)$, the major index of π, to be sum of the descents of π. [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi=416253, \operatorname{maj}(\pi)=9$ since the descents of π are in positions 1,3 , and 5 .

$$
\begin{array}{llll}
\operatorname{maj}(12)=0 & \operatorname{maj}(123)=_{-} & \operatorname{maj}(213)=_{-} & \operatorname{maj}(312)=_{-} \\
\operatorname{maj}(21)=1 & \operatorname{maj}(132)=_{-} & \operatorname{maj}(231)=_{-} & \operatorname{maj}(321)==_{-}
\end{array}
$$

$n \backslash m$	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $\operatorname{maj}(\pi)$?

The distribution of $\operatorname{maj}(\pi)$
IS THE SAME AS the distribution of $\operatorname{inv}(\pi)$!
A statistic that has the same distribution as inv is called Mahonian.

There's always more to learn!!!

Theorem: inv and maj are equidistributed on S_{n}.
Proofs exist using generating functions and using bijections.

- Find a bijection $f: S_{n} \rightarrow S_{n}$ such that $\operatorname{maj}(\pi)=\operatorname{inv}(f(\pi))$.

References:

© Miklós Bóna. Combinatorics of Permutations, CRC, 2004.
固 T. Kyle Petersen. Two-sided Eulerian numbers via balls in boxes. http://arxiv.org/abs/1209.6273
围 The Combinatorial Statistic Finder. http://findstat.org/

