Combinatorial statistics

Given a set of combinatorial objects A, a combinatorial statistic is an integer given to every element of the set.

In other words, it is a function $\mathcal{A} \to \mathbb{Z}_{\geq 0}$.

Combinatorial statistics

Given a set of combinatorial objects A, a combinatorial statistic is an integer given to every element of the set.

In other words, it is a function $\mathcal{A} \to \mathbb{Z}_{\geq 0}$.

Example. Let \mathcal{S} be the set of subsets of $\{1,2,3\}$.

The cardinality of a set is a combinatorial statistic on S.

$$\begin{array}{ll} \left|\emptyset\right| = 0 & \left|\{1\}\right| = 1 & \left|\{2\}\right| = 1 & \left|\{3\}\right| = 1 \\ \left|\{1,2\}\right| = 2 & \left|\{1,3\}\right| = 2 & \left|\{2,3\}\right| = 2 & \left|\{1,2,3\}\right| = 3 \end{array}$$

Combinatorial statistics

Given a set of combinatorial objects A, a combinatorial statistic is an integer given to every element of the set.

In other words, it is a function $A \to \mathbb{Z}_{\geq 0}$.

Example. Let S be the set of subsets of $\{1,2,3\}$.

The cardinality of a set is a combinatorial statistic on S.

$$\begin{array}{ll} \left|\emptyset\right| = 0 & \left|\{1\}\right| = 1 & \left|\{2\}\right| = 1 & \left|\{3\}\right| = 1 \\ \left|\{1,2\}\right| = 2 & \left|\{1,3\}\right| = 2 & \left|\{2,3\}\right| = 2 & \left|\{1,2,3\}\right| = 3 \end{array}$$

Combinatorial statistics provide a refinement of counting.

less information

counting

more information

complete

enumeration

Given a set of combinatorial objects A, a **combinatorial statistic** is an integer given to every element of the set.

In other words, it is a function $\mathcal{A} \to \mathbb{Z}_{\geq 0}$.

Example. Let S be the set of subsets of $\{1,2,3\}$.

The cardinality of a set is a combinatorial statistic on S.

$$\begin{array}{ll} \left|\emptyset\right| = 0 & \left|\{1\}\right| = 1 & \left|\{2\}\right| = 1 & \left|\{3\}\right| = 1 \\ \left|\{1,2\}\right| = 2 & \left|\{1,3\}\right| = 2 & \left|\{2,3\}\right| = 2 & \left|\{1,2,3\}\right| = 3 \end{array}$$

Combinatorial statistics provide a refinement of counting.

More statistics

 $Questions\ involving\ combinatorial\ statistics:$

▶ What is the *distribution* of the statistics?

More statistics

Questions involving combinatorial statistics:

- ▶ What is the *distribution* of the statistics?
- ▶ What is the average size of an object in the set?

More statistics

Questions involving combinatorial statistics:

- ▶ What is the *distribution* of the statistics?
- ▶ What is the *average size* of an object in the set?
- ▶ Which statistics have the same distribution?
 - ▶ Insight into their structure.
 - Provides non-trivial bijections in the set?

More statistics

Questions involving combinatorial statistics:

- ▶ What is the *distribution* of the statistics?
- ▶ What is the *average size* of an object in the set?
- ▶ Which statistics have the same distribution?
 - ▶ Insight into their structure.
 - Provides non-trivial bijections in the set?

A especially rich playground involves permutation statistics.

Representations of permutations

```
One-line notation: \pi = 416253 Cycle notation: \pi = (142)(36)(5)
```

More statistics

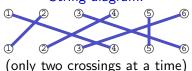
Questions involving combinatorial statistics:

- ▶ What is the distribution of the statistics?
- ▶ What is the average size of an object in the set?
- ▶ Which statistics have the same distribution?
 - Insight into their structure.
 - Provides non-trivial bijections in the set?

A especially rich playground involves permutation statistics.

Representations of permutations

One-line notation: $\pi = 416253$ Cycle notation: $\pi = (142)(36)(5)$ String diagram:



Matrix-like diagram:

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A **descent** is a position *i* such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the **number of descents** in π .

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A **descent** is a position *i* such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the **number of descents** in π .

Example. When $\pi = 416253$, $des(\pi) = 3$ since $4 \setminus 1$, $6 \setminus 2$, $5 \setminus 3$.

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A **descent** is a position *i* such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the **number of descents** in π .

Example. When $\pi = 416253$, $des(\pi) = 3$ since $4 \setminus 1$, $6 \setminus 2$, $5 \setminus 3$.

Question: How many *n*-permutations have *d* descents?

$$des(12) = 0$$
 $des(123) = _ des(213) = _ des(312) = _ des(21) = _ des(312) = _ des(321) = _ des$

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A **descent** is a position *i* such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the **number of descents** in π .

Example. When $\pi = 416253$, $des(\pi) = 3$ since $4 \setminus 1$, $6 \setminus 2$, $5 \setminus 3$.

Question: How many n-permutations have d descents?

$$\begin{array}{lll} \deg(12) = 0 & \deg(123) = _ & \deg(213) = _ & \deg(312) = _ \\ \deg(21) = 1 & \deg(132) = _ & \deg(231) = _ & \deg(321) = _ \end{array}$$

$n \backslash d$	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for $des(\pi)$?

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A **descent** is a position *i* such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the number of descents in π .

Example. When $\pi = 416253$, $des(\pi) = 3$ since $4 \setminus 1$, $6 \setminus 2$, $5 \setminus 3$.

Question: How many n-permutations have d descents?

$$des(12) = 0$$
 $des(123) = _ des(213) = _ des(312) = _ des(312) = _ des(312) = _ des(321) = _ de$

n\d	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for $des(\pi)$?

Note the symmetry. If π has d descents, its reverse $\hat{\pi}$ has descents.

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A **descent** is a position *i* such that $\pi_i > \pi_{i+1}$.

Define $des(\pi)$ to be the number of descents in π .

Example. When $\pi = 416253$, $des(\pi) = 3$ since $4 \setminus 1$, $6 \setminus 2$, $5 \setminus 3$.

Question: How many n-permutations have d descents?

$$\begin{array}{lll} \deg(12) = 0 & \quad \deg(123) = _ & \quad \deg(213) = _ & \quad \deg(312) = _ \\ \deg(21) = 1 & \quad \deg(321) = _ & \quad \deg(321) = _ & \end{array}$$

$n \backslash d$	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for $des(\pi)$?

Note the symmetry. If π has d descents, its reverse $\hat{\pi}$ has ____ descents.

These are the Eulerian numbers.

Eulerian Numbers

Definition: $A_{n,k} = \text{number of } n\text{-permutations with } k-1 \text{ descents.}$

Theorem: $A_{n,k+1} = (k+1)A_{n-1,k+1} + (n-k)A_{n-1,k}$

Eulerian Numbers

Definition: $A_{n,k} = \text{number of } n\text{-permutations with } k - 1 \text{ descents.}$

Theorem: $A_{n,k+1} = (k+1)A_{n-1,k+1} + (n-k)A_{n-1,k}$

Proof. Ask: How many *n*-permutations have *k* descents?

LHS: $A_{n,k+1}$, of course!

Eulerian Numbers

Definition: $A_{n,k} = \text{number of } n\text{-permutations with } k-1 \text{ descents.}$

Theorem:
$$A_{n,k+1} = (k+1)A_{n-1,k+1} + (n-k)A_{n-1,k}$$

Proof. Ask: How many *n*-permutations have *k* descents?

LHS: $A_{n,k+1}$, of course!

RHS: Insert the number n into an (n-1)-permutation. When n is inserted into an (n-1)-permutation with d descents, the resulting n-permutation either has

- ▶ d descents (If n inserted in a position that is a descent or at end.)
- ightharpoonup d+1 descents (If *n* inserted in a position that is not a descent.)

Eulerian Numbers

Definition: $A_{n,k} = \text{number of } n\text{-permutations with } k-1 \text{ descents.}$

Theorem:
$$A_{n,k+1} = (k+1)A_{n-1,k+1} + (n-k)A_{n-1,k}$$

Proof. Ask: How many *n*-permutations have *k* descents?

LHS: $A_{n,k+1}$, of course!

RHS: Insert the number n into an (n-1)-permutation. When n is inserted into an (n-1)-permutation with d descents, the resulting n-permutation either has

- ▶ d descents (If n inserted in a position that is a descent or at end.)
- ightharpoonup d+1 descents (If n inserted in a position that is not a descent.)

Conclusion: An n-perm with k descents can arise by inserting n:

- ▶ into a perm with k existing descents in $(k+1)A_{n-1,k+1}$ ways.
- ▶ into a perm with k-1 existing descents in $(n-k)A_{n-1,k}$ ways.

Eulerian Numbers

The initial conditions $A_{n,1}=1$ and $A_{n,n}=1$ for all n along with the recurrence $A_{n,k+1}=$

$$(k+1)A_{n-1,k+1}+(n-k)A_{n-1,k}$$

allow us to fill the chart:

n	$A_{n,1}$	$A_{n,2}$	$A_{n,3}$	$A_{n,4}$	$A_{n,5}$	$A_{n,6}$
1	1					
2	1	1				
3	1	4	1			
4	1	11	11	1		
5	1	26	66	26	1	
6	1	57				1

Eulerian Numbers

The initial conditions $A_{n,1} = 1$ and $A_{n,n} = 1$ for all n

 $A_{n,1}$ $A_{n,2}$ $A_{n,3}$ $A_{n,4}$ $A_{n,5}$ $A_{n,6}$

Fact: The Eulerian numbers satisfy the following identities.

$$A_{n,k} = \sum_{i=0}^{k} (-1)^{i} {n+1 \choose i} (k-i)^{n}.$$

$$S(n,r) = \frac{1}{r!} \sum_{k=0}^{r} A_{n,k} {n-k \choose r-k}$$

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

An **inversion** is a pair i < j such that $\pi_i > \pi_j$.

Define $inv(\pi)$ as the number of inversions in π .

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

An **inversion** is a pair i < j such that $\pi_i > \pi_j$.

Define inv(π) as the number of inversions in π .

Example. When $\pi = 416253$, $inv(\pi) = 7$ since 4 > 1, 4 > 2, 4 > 3, 6 > 2, 6 > 5, 6 > 3, 5 > 3.

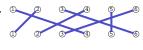
Inversion statistic

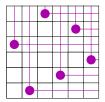
Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. ©

An **inversion** is a pair i < j such that $\pi_i > \pi_j$.

Define inv(π) as the **number of inversions** in π .

Example. When $\pi=416253$, $inv(\pi)=7$ since 4>1, 4>2, 4>3, 6>2, 6>5, 6>3, 5>3. In a string diagram $inv(\pi)=$ number of crossings. In a matrix diagram $inv(\pi)$, draw *Rothe diagram*:





Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. \bigcirc

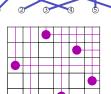
An **inversion** is a pair i < j such that $\pi_i > \pi_i$.

Define inv(π) as the number of inversions in π .

Example. When $\pi = 416253$, inv $(\pi) = 7$ since 4 > 1, 4 > 2, 4 > 3, 6 > 2, 6 > 5, 6 > 3, 5 > 3. In a string diagram inv(π) = number of crossings. In a matrix diagram inv(π), draw Rothe diagram:

$$inv(12) = 0$$
 $inv(123) = _ inv(213) = _ inv(213) = _ inv(231) = _ in$

$$inv(213) = _{-}$$



inv(312)	=_
inv(321)	=

n∖i	0	1	2	3	4	5	6
1	1						
1 2 3 4	1	1 2 3					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $inv(\pi)$?

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. \oplus

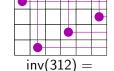
An **inversion** is a pair i < j such that $\pi_i > \pi_j$.

Define inv(π) as the number of inversions in π .

Example. When $\pi=416253$, $inv(\pi)=7$ since 4>1, 4>2, 4>3, 6>2, 6>5, 6>3, 5>3. In a string diagram $inv(\pi)=$ number of crossings. In a matrix diagram $inv(\pi)$, draw *Rothe diagram*:

$$inv(12) = 0$$
 $inv(123) = _ inv(213) = _ inv(213) = _ inv(231) = _ in$

$$inv(213) = _$$
 $inv(312) = _$
 $inv(231) =$ $inv(321) =$



n∖i	0	1	2	3	4	5	6
1	1						
2	1	1					
1 2 3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $inv(\pi)$?

The inversion number is a good way to count how "far away" a permutation is from the identity.

Gaussian polynomials

Definition: $b_{n,k} = \text{number of } n\text{-permutations with } k \text{ inversions.}$

Theorem: Let $k \leq n$. Then $b_{n+1,k} = b_{n+1,k-1} + b_{n,k}$

Gaussian polynomials

Definition: $b_{n,k} = \text{number of } n\text{-permutations with } k \text{ inversions.}$

Theorem: Let $k \leq n$. Then $b_{n+1,k} = b_{n+1,k-1} + b_{n,k}$

Proof. Ask: How many (n+1)-permutations have k descents?

LHS: $b_{n+1,k}$, evidently!

RHS: Condition on the position of (n + 1).

The (n+1)-perms with k descents and (n+1) in the last position are in bijection with

Gaussian polynomials

Definition: $b_{n,k} = \text{number of } n\text{-permutations with } k \text{ inversions.}$

Theorem: Let $k \leq n$. Then $b_{n+1,k} = b_{n+1,k-1} + b_{n,k}$

Proof. Ask: How many (n + 1)-permutations have k descents?

LHS: $b_{n+1,k}$, evidently!

RHS: Condition on the position of (n + 1).

The (n+1)-perms with k descents and (n+1) in the last position are in bijection with , and are counted by

Gaussian polynomials

```
Definition: b_{n,k} = \text{number of } n\text{-permutations with } k \text{ inversions.}
Theorem: Let k \leq n. Then b_{n+1,k} = b_{n+1,k-1} + b_{n,k}
Proof. Ask: How many (n+1)-permutations have k descents?
LHS: b_{n+1,k}, evidently!
RHS: Condition on the position of (n + 1).
The (n+1)-perms with k descents and (n+1) in the last position
are in bijection with
                      , and are counted by
If (n+1) is not in the last position, switch it with its right neighbor.
We recover an (n+1)-permutation with k-1 descents with the
added condition that
```

Gaussian polynomials

```
Definition: b_{n,k} = \text{number of } n\text{-permutations with } k \text{ inversions.}
Theorem: Let k \leq n. Then b_{n+1,k} = b_{n+1,k-1} + b_{n,k}
Proof. Ask: How many (n + 1)-permutations have k descents?
LHS: b_{n+1,k}, evidently!
RHS: Condition on the position of (n + 1).
The (n+1)-perms with k descents and (n+1) in the last position
are in bijection with , and are counted by
If (n+1) is not in the last position, switch it with its right neighbor.
We recover an (n+1)-permutation with k-1 descents with the
added condition that
Since k \le n, then every (n+1)-permutation with k-1 inversions
satisfy this condition, (WHY?)
```

Definition: $b_{n,k} = \text{number of } n\text{-permutations with } k \text{ inversions.}$

Theorem: Let $k \leq n$. Then $b_{n+1,k} = b_{n+1,k-1} + b_{n,k}$

Gaussian polynomials

```
Proof. Ask: How many (n + 1)-permutations have k descents?
LHS: b_{n+1,k}, evidently!
RHS: Condition on the position of (n + 1).
The (n+1)-perms with k descents and (n+1) in the last position
are in bijection with , and are counted by .
If (n+1) is not in the last position, switch it with its right neighbor.
We recover an (n+1)-permutation with k-1 descents with the
added condition that
Since k \le n, then every (n+1)-permutation with k-1 inversions
satisfy this condition, (WHY?)
We conclude that there are b_{n+1,k-1} ways in which this can happen.
```

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the **major index** of π , to be sum of the descents of π . [Named after Major Percy MacMahon. (British army, early 1900's)]

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the major index of π , to be sum of the descents of π .

[Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi = 416253$, maj $(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the **major index** of π , to be sum of the descents of π .

[Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi = 416253$, maj $(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

$$\begin{array}{lll} {\sf maj}(12) = 0 & {\sf maj}(123) = _ & {\sf maj}(213) = _ & {\sf maj}(312) = _ \\ {\sf maj}(21) = 1 & {\sf maj}(132) = _ & {\sf maj}(231) = _ & {\sf maj}(321) = _ \\ \end{array}$$

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the major index of π , to be sum of the descents of π .

[Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi=416253$, maj $(\pi)=9$ since the descents of π are in positions 1, 3, and 5.

$$maj(12) = 0$$
 $maj(123) = _ maj(21) = 1$ $maj(132) = _ maj(132)$

maj(213) = _	$maj(312) = _{-}$
$maj(231) = _{_}$	$maj(321) = _{-}$

$n \backslash m$	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for maj(π)?

The distribution of maj(π) IS THE SAME AS the distribution of inv(π)!

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the major index of π , to be sum of the descents of π . [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi = 416253$, maj $(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

$$maj(12) = 0$$
 $maj(123) = _ maj(21) = 1$ $maj(132) = _ maj(132)$

$maj(213) = _{-}$	$maj(312) = _{-}$
$maj(231) = _{_}$	$maj(321) = _{-}$

$n \backslash m$	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for maj(π)?

The distribution of maj(π) IS THE SAME AS the distribution of inv(π)!

A statistic that has the same distribution as inv is called Mahonian.

There's always more to learn!!!

Theorem: inv and maj are equidistributed on S_n .

Proofs exist using generating functions and using bijections.

▶ Find a bijection $f: S_n \to S_n$ such that maj $(\pi) = \text{inv}(f(\pi))$.

References:

- Miklós Bóna. Combinatorics of Permutations, CRC, 2004.
 - T. Kyle Petersen. Two-sided Eulerian numbers via balls in boxes. http://arxiv.org/abs/1209.6273
- The Combinatorial Statistic Finder. http://findstat.org/