Combinatorial statistics

Given a set of combinatorial objects \mathcal{A} , a **combinatorial statistic** is an integer given to every element of the set.

In other words, it is a function $\mathcal{A} \to \mathbb{Z}_{\geq 0}$.

Example. Let S be the set of subsets of $\{1, 2, 3\}$. The cardinality of a set is a combinatorial statistic on S.

$$\begin{aligned} & \left| \emptyset \right| = 0 & \left| \{1\} \right| = 1 & \left| \{2\} \right| = 1 & \left| \{3\} \right| = 1 \\ & \left| \{1,2\} \right| = 2 & \left| \{1,3\} \right| = 2 & \left| \{2,3\} \right| = 2 & \left| \{1,2,3\} \right| = 3 \end{aligned}$$

Combinatorial statistics provide a *refinement* of counting.

less information

more information

More statistics

Questions involving combinatorial statistics:

- ► What is the *distribution* of the statistics?
- ► What is the *average size* of an object in the set?
- Which statistics have the same distribution?
 - Insight into their structure.
 - Provides non-trivial bijections in the set?
- A especially rich playground involves *permutation statistics*.

Representations of permutations

One-line notation: $\pi = 416253$ Cycle notation: $\pi = (142)(36)(5)$

String diagram: 1 2 3 4 5 6 1 2 3 4 5 6 (only two crossings at a time) Matrix-like diagram:

Descent statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

A **descent** is a position *i* such that $\pi_i > \pi_{i+1}$.

Define des(π) to be the **number of descents** in π .

Question: How many *n*-permutations have *d* descents?

des(12) = 0	$des(123) = _$	$des(213) = _$	$des(312) = _{}$
des(21) = 1	$des(132) = $ _	des(231) = _	$des(321) = _$

$n \backslash d$	0	1	2	3	4
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

What are the possible values for des (π) ? Note the symmetry. If π has d descents, its reverse $\hat{\pi}$ has ____ descents.

These are the **Eulerian numbers**.

Eulerian Numbers

Definition: $A_{n,k}$ = number of *n*-permutations with k - 1 descents. Theorem: $A_{n,k+1} = (k + 1)A_{n-1,k+1} + (n - k)A_{n-1,k}$ Proof. Ask: How many *n*-permutations have *k* descents? LHS: $A_{n,k+1}$, of course! RHS: Insert the number *n* into an (n - 1)-permutation.

When *n* is inserted into an (n - 1)-permutation with *d* descents, the resulting *n*-permutation either has

▶ *d* descents (If *n* inserted in a position that is a descent or at end.)

▶ d + 1 descents (If *n* inserted in a position that is not a descent.) Conclusion: An *n*-perm with *k* descents can arise by inserting *n*:

- ▶ into a perm with k existing descents in $(k+1)A_{n-1,k+1}$ ways.
- ▶ into a perm with k-1 existing descents in $(n-k)A_{n-1,k}$ ways.

Eulerian Numbers

The initial conditions $A_{n,1} = 1$ and $A_{n,n} = 1$ for all nalong with the recurrence $A_{n,k+1} = (k+1)A_{n-1,k+1} + (n-k)A_{n-1,k}$ allow us to fill the chart:

n	$A_{n,1}$	$A_{n,2}$	<i>A</i> _{<i>n</i>,3}	$A_{n,4}$	$A_{n,5}$	<i>A</i> _{<i>n</i>,6}
1	1					
2	1	1				
3	1	4	1			
4	1	11	11	1		
5	1	26	66	26	1	
6	1	57				1

Fact: The Eulerian numbers satisfy the following identities.

$$A_{n,k} = \sum_{i=0}^{k} (-1)^{i} \binom{n+1}{i} (k-i)^{n}$$
$$S(n,r) = \frac{1}{r!} \sum_{k=0}^{r} A_{n,k} \binom{n-k}{r-k}$$

Inversion statistic

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation. An **inversion** is a pair i < j such that $\pi_i > \pi_j$.

Define $inv(\pi)$ as the **number of inversions** in π .

Example. When $\pi = 416253$, $inv(\pi) = 7$ since 4 > 1, 4 > 2, 4 > 3, 6 > 2, 6 > 5, 6 > 3, 5 > 3. In a string diagram $inv(\pi) =$ number of crossings. In a matrix diagram $inv(\pi)$, draw *Rothe diagram*:

inv(12) = 0	$inv(123) = $ _
inv(21) = 1	$inv(132) = $ _

n∖i	0	1	2	3	4	5	6
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1

What are the possible values for $inv(\pi)$?

inv(213) =____

inv(231) =

The inversion number is a good way to count how "far away" a permutation is from the identity.

Gaussian polynomials

Definition: $b_{n,k}$ = number of *n*-permutations with *k* inversions.

Theorem: Let $k \leq n$. Then $b_{n+1,k} = b_{n+1,k-1} + b_{n,k}$

Proof. Ask: How many (n + 1)-permutations have k descents?

LHS: $b_{n+1,k}$, evidently!

RHS: Condition on the position of (n + 1).

The (n + 1)-perms with k descents and (n + 1) in the last position are in bijection with , and are counted by .

If (n + 1) is not in the last position, switch it with its right neighbor. We recover an (n + 1)-permutation with k - 1 descents with the added condition that

Since $k \leq n$, then every (n + 1)-permutation with k - 1 inversions satisfy this condition, (WHY?)

We conclude that there are $b_{n+1,k-1}$ ways in which this can happen.

Major index

Definition: Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation.

Define maj(π), the **major index** of π , to be sum of the descents of π . [Named after Major Percy MacMahon. (British army, early 1900's)]

Example. When $\pi = 416253$, maj $(\pi) = 9$ since the descents of π are in positions 1, 3, and 5.

maj(12) = 0	$maj(123) = _$	$maj(213) = _$	$maj(312) = _$
maj(21) = 1	$maj(132) = _$	$maj(231) = _$	$maj(321) = _$

$n \setminus m$	0	1	2	3	4	5	6	What are the possible values for
1	1							$maj(\pi)$?
2	1	1						The distribution of maj(π)
3	1	2	2	1				IS THE SAME AS
4	1	3	5	6	5	3	1	the distribution of $inv(\pi)!$

A statistic that has the same distribution as inv is called Mahonian.

There's always more to learn!!!

Theorem: inv and maj are equidistributed on S_n .

Proofs exist using generating functions and using bijections.

Find a bijection $f: S_n \to S_n$ such that $maj(\pi) = inv(f(\pi))$.

References :

- Niklós Bóna. Combinatorics of Permutations, CRC, 2004.
- T. Kyle Petersen. Two-sided Eulerian numbers via balls in boxes. http://arxiv.org/abs/1209.6273
- The Combinatorial Statistic Finder. http://findstat.org/