
Trees — §6.2 128

Graph Theory

Definition: A graph G = (V ,E) is made up
of a set of vertices V and a set of edges E .

Trees — §6.2 128

Graph Theory

Definition: A graph G = (V ,E) is made up
of a set of vertices V and a set of edges E .

Example. G = (V ,E)
where V = {v ,w , x , y},
E = {vw , vx , vy ,wx}.

Trees — §6.2 128

Graph Theory

Definition: A graph G = (V ,E) is made up
of a set of vertices V and a set of edges E .

Think of a vertex v as a dot and an edge
e = vw as a curve connecting v and w .

Example. G = (V ,E)
where V = {v ,w , x , y},
E = {vw , vx , vy ,wx}.

Trees — §6.2 128

Graph Theory

Definition: A graph G = (V ,E) is made up
of a set of vertices V and a set of edges E .

Think of a vertex v as a dot and an edge
e = vw as a curve connecting v and w .

A graph is connected if for every two ver-
tices v and w , there is a path from v to w .

Example. G = (V ,E)
where V = {v ,w , x , y},
E = {vw , vx , vy ,wx}.

Trees — §6.2 128

Graph Theory

Definition: A graph G = (V ,E) is made up
of a set of vertices V and a set of edges E .

Think of a vertex v as a dot and an edge
e = vw as a curve connecting v and w .

A graph is connected if for every two ver-
tices v and w , there is a path from v to w .

Example. G = (V ,E)
where V = {v ,w , x , y},
E = {vw , vx , vy ,wx}.

T/F: G is connected.

Trees — §6.2 128

Graph Theory

Definition: A graph G = (V ,E) is made up
of a set of vertices V and a set of edges E .

Think of a vertex v as a dot and an edge
e = vw as a curve connecting v and w .

A graph is connected if for every two ver-
tices v and w , there is a path from v to w .

The degree of a vertex v is the number of
edges connected to v .

A leaf is a vertex with degree 1.

Example. G = (V ,E)
where V = {v ,w , x , y},
E = {vw , vx , vy ,wx}.

T/F: G is connected.

Trees — §6.2 128

Graph Theory

Definition: A graph G = (V ,E) is made up
of a set of vertices V and a set of edges E .

Think of a vertex v as a dot and an edge
e = vw as a curve connecting v and w .

A graph is connected if for every two ver-
tices v and w , there is a path from v to w .

The degree of a vertex v is the number of
edges connected to v .

A leaf is a vertex with degree 1.

Example. G = (V ,E)
where V = {v ,w , x , y},
E = {vw , vx , vy ,wx}.

deg v =
deg y =

T/F: G is connected.

Trees — §6.2 128

Graph Theory

Definition: A graph G = (V ,E) is made up
of a set of vertices V and a set of edges E .

Think of a vertex v as a dot and an edge
e = vw as a curve connecting v and w .

A graph is connected if for every two ver-
tices v and w , there is a path from v to w .

The degree of a vertex v is the number of
edges connected to v .

A leaf is a vertex with degree 1.

Example. G = (V ,E)
where V = {v ,w , x , y},
E = {vw , vx , vy ,wx}.

deg v =
deg y =

T/F: G is connected.

A path is a set of edges “in a line”: {v1v2, v2v3, . . . , vk−1vk}
A cycle is a set of edges “in a circle”: {v1v2, v2v3, . . . , vk−1vk , vkv1}

Trees — §6.2 128

Graph Theory

Definition: A graph G = (V ,E) is made up
of a set of vertices V and a set of edges E .

Think of a vertex v as a dot and an edge
e = vw as a curve connecting v and w .

A graph is connected if for every two ver-
tices v and w , there is a path from v to w .

The degree of a vertex v is the number of
edges connected to v .

A leaf is a vertex with degree 1.

Example. G = (V ,E)
where V = {v ,w , x , y},
E = {vw , vx , vy ,wx}.

deg v =
deg y =

T/F: G is connected.
T/F: G has a cycle.

A path is a set of edges “in a line”: {v1v2, v2v3, . . . , vk−1vk}
A cycle is a set of edges “in a circle”: {v1v2, v2v3, . . . , vk−1vk , vkv1}

Trees — §6.2 128

Graph Theory

Definition: A graph G = (V ,E) is made up
of a set of vertices V and a set of edges E .

Think of a vertex v as a dot and an edge
e = vw as a curve connecting v and w .

A graph is connected if for every two ver-
tices v and w , there is a path from v to w .

The degree of a vertex v is the number of
edges connected to v .

A leaf is a vertex with degree 1.

Example. G = (V ,E)
where V = {v ,w , x , y},
E = {vw , vx , vy ,wx}.

deg v =
deg y =

T/F: G is connected.
T/F: G has a cycle.

A path is a set of edges “in a line”: {v1v2, v2v3, . . . , vk−1vk}
A cycle is a set of edges “in a circle”: {v1v2, v2v3, . . . , vk−1vk , vkv1}
A tree is a connected graph containing no cycles.
A forest is a graph containing no cycles. (may not be connected)

Trees — §6.2 128

Graph Theory

Definition: A graph G = (V ,E) is made up
of a set of vertices V and a set of edges E .

Think of a vertex v as a dot and an edge
e = vw as a curve connecting v and w .

A graph is connected if for every two ver-
tices v and w , there is a path from v to w .

The degree of a vertex v is the number of
edges connected to v .

A leaf is a vertex with degree 1.

Example. G = (V ,E)
where V = {v ,w , x , y},
E = {vw , vx , vy ,wx}.

deg v =
deg y =

T/F: G is connected.
T/F: G has a cycle.
T/F: G is a tree.

A path is a set of edges “in a line”: {v1v2, v2v3, . . . , vk−1vk}
A cycle is a set of edges “in a circle”: {v1v2, v2v3, . . . , vk−1vk , vkv1}
A tree is a connected graph containing no cycles.
A forest is a graph containing no cycles. (may not be connected)

Trees — §6.2 129

Counting Trees

Question: How many trees are there?

Trees — §6.2 129

Counting Trees

Question: How many trees are there?

Answer: It depends.

Trees — §6.2 129

Counting Trees

Question: How many trees are there?

Answer: It depends.

� Are there restrictions?

� Are the vertices labeled?

Trees — §6.2 129

Counting Trees

Question: How many trees are there?

Answer: It depends.

� Are there restrictions?

� We’ll end by counting binary trees.

� Are the vertices labeled?

Trees — §6.2 129

Counting Trees

Question: How many trees are there?

Answer: It depends.

� Are there restrictions?

� We’ll end by counting binary trees.

� Are the vertices labeled?

� Does this matter? (Oh, yes!)

Trees — §6.2 129

Counting Trees

Question: How many trees are there?

Answer: It depends.

� Are there restrictions?

� We’ll end by counting binary trees.

� Are the vertices labeled?

� Does this matter? (Oh, yes!)
� Unlabeled vs. Labeled: (A000055 vs. A000272)

Trees — §6.2 129

Counting Trees

Question: How many trees are there?

Answer: It depends.

� Are there restrictions?

� We’ll end by counting binary trees.

� Are the vertices labeled?

� Does this matter? (Oh, yes!)
� Unlabeled vs. Labeled: (A000055 vs. A000272)

� We can label every unlabeled tree in some number of ways. �

Trees — §6.2 129

Counting Trees

Question: How many trees are there?

Answer: It depends.

� Are there restrictions?

� We’ll end by counting binary trees.

� Are the vertices labeled?

� Does this matter? (Oh, yes!)
� Unlabeled vs. Labeled: (A000055 vs. A000272)

� We can label every unlabeled tree in some number of ways. �
� There is no nice formula for the number of unlabeled trees.

Trees — §6.2 129

Counting Trees

Question: How many trees are there?

Answer: It depends.

� Are there restrictions?

� We’ll end by counting binary trees.

� Are the vertices labeled?

� Does this matter? (Oh, yes!)
� Unlabeled vs. Labeled: (A000055 vs. A000272)

� We can label every unlabeled tree in some number of ways. �
� There is no nice formula for the number of unlabeled trees.
� There is an amazingly nice formula for the number of labeled trees.

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is . (drumroll....)

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is nn−2. (drumroll....)

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is nn−2. (drumroll....)

Proof. We will construct a bijection between:

f :

{
labeled trees T
with n vertices

}
→

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
.

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is nn−2. (drumroll....)

Proof. We will construct a bijection between:

f :

{
labeled trees T
with n vertices

}
→

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
.

Given a tree T , create a list L called its Prüfer sequence:

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is nn−2. (drumroll....)

Proof. We will construct a bijection between:

f :

{
labeled trees T
with n vertices

}
→

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
.

Given a tree T , create a list L called its Prüfer sequence:

� Start with the empty list L = ().

� Repeat the following steps until the tree has only two vertices:

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is nn−2. (drumroll....)

Proof. We will construct a bijection between:

f :

{
labeled trees T
with n vertices

}
→

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
.

Given a tree T , create a list L called its Prüfer sequence:

� Start with the empty list L = ().

� Repeat the following steps until the tree has only two vertices:

� Find the leaf v with the smallest label.

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is nn−2. (drumroll....)

Proof. We will construct a bijection between:

f :

{
labeled trees T
with n vertices

}
→

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
.

Given a tree T , create a list L called its Prüfer sequence:

� Start with the empty list L = ().

� Repeat the following steps until the tree has only two vertices:

� Find the leaf v with the smallest label.
� Append the label of v ’s neighbor to L.

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is nn−2. (drumroll....)

Proof. We will construct a bijection between:

f :

{
labeled trees T
with n vertices

}
→

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
.

Given a tree T , create a list L called its Prüfer sequence:

� Start with the empty list L = ().

� Repeat the following steps until the tree has only two vertices:

� Find the leaf v with the smallest label.
� Append the label of v ’s neighbor to L.
� Remove v from the tree.

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is nn−2. (drumroll....)

Proof. We will construct a bijection between:

f :

{
labeled trees T
with n vertices

}
→

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
.

Given a tree T , create a list L called its Prüfer sequence:

� Start with the empty list L = ().
� Repeat the following steps until the tree has only two vertices:

� Find the leaf v with the smallest label.
� Append the label of v ’s neighbor to L.
� Remove v from the tree.

Example. The Prüfer sequence
of this tree is (2, 6, 1, 2, 9, 1, 6). 7

2

3

9 6

4

1

5

8

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is nn−2. (drumroll....)

Proof. We will construct a bijection between:

f :

{
labeled trees T
with n vertices

}
→

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
.

Given a tree T , create a list L called its Prüfer sequence:

� Start with the empty list L = ().
� Repeat the following steps until the tree has only two vertices:

� Find the leaf v with the smallest label.
� Append the label of v ’s neighbor to L.
� Remove v from the tree.

Example. The Prüfer sequence
of this tree is (2, 6, 1, 2, 9, 1, 6). 7

2

9 6

4

1

5

8

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is nn−2. (drumroll....)

Proof. We will construct a bijection between:

f :

{
labeled trees T
with n vertices

}
→

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
.

Given a tree T , create a list L called its Prüfer sequence:

� Start with the empty list L = ().
� Repeat the following steps until the tree has only two vertices:

� Find the leaf v with the smallest label.
� Append the label of v ’s neighbor to L.
� Remove v from the tree.

Example. The Prüfer sequence
of this tree is (2, 6, 1, 2, 9, 1, 6). 7

2

9 6

1

5

8

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is nn−2. (drumroll....)

Proof. We will construct a bijection between:

f :

{
labeled trees T
with n vertices

}
→

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
.

Given a tree T , create a list L called its Prüfer sequence:

� Start with the empty list L = ().
� Repeat the following steps until the tree has only two vertices:

� Find the leaf v with the smallest label.
� Append the label of v ’s neighbor to L.
� Remove v from the tree.

Example. The Prüfer sequence
of this tree is (2, 6, 1, 2, 9, 1, 6). 7

2

9 6

1

8

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is nn−2. (drumroll....)

Proof. We will construct a bijection between:

f :

{
labeled trees T
with n vertices

}
→

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
.

Given a tree T , create a list L called its Prüfer sequence:

� Start with the empty list L = ().
� Repeat the following steps until the tree has only two vertices:

� Find the leaf v with the smallest label.
� Append the label of v ’s neighbor to L.
� Remove v from the tree.

Example. The Prüfer sequence
of this tree is (2, 6, 1, 2, 9, 1, 6).

2

9 6

1

8

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is nn−2. (drumroll....)

Proof. We will construct a bijection between:

f :

{
labeled trees T
with n vertices

}
→

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
.

Given a tree T , create a list L called its Prüfer sequence:

� Start with the empty list L = ().
� Repeat the following steps until the tree has only two vertices:

� Find the leaf v with the smallest label.
� Append the label of v ’s neighbor to L.
� Remove v from the tree.

Example. The Prüfer sequence
of this tree is (2, 6, 1, 2, 9, 1, 6).

9 6

1

8

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is nn−2. (drumroll....)

Proof. We will construct a bijection between:

f :

{
labeled trees T
with n vertices

}
→

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
.

Given a tree T , create a list L called its Prüfer sequence:

� Start with the empty list L = ().
� Repeat the following steps until the tree has only two vertices:

� Find the leaf v with the smallest label.
� Append the label of v ’s neighbor to L.
� Remove v from the tree.

Example. The Prüfer sequence
of this tree is (2, 6, 1, 2, 9, 1, 6).

9 6

1

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is nn−2. (drumroll....)

Proof. We will construct a bijection between:

f :

{
labeled trees T
with n vertices

}
→

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
.

Given a tree T , create a list L called its Prüfer sequence:

� Start with the empty list L = ().
� Repeat the following steps until the tree has only two vertices:

� Find the leaf v with the smallest label.
� Append the label of v ’s neighbor to L.
� Remove v from the tree.

Example. The Prüfer sequence
of this tree is (2, 6, 1, 2, 9, 1, 6).

9 6

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is nn−2. (drumroll....)

Proof. We will construct a bijection between:

f :

{
labeled trees T
with n vertices

}
→

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
.

Given a tree T , create a list L called its Prüfer sequence:

� Start with the empty list L = ().
� Repeat the following steps until the tree has only two vertices:

� Find the leaf v with the smallest label.
� Append the label of v ’s neighbor to L.
� Remove v from the tree.

Example. The Prüfer sequence
of this tree is (2, 6, 1, 2, 9, 1, 6).

� This rule is well defined. �
7

2

3

9 6

4

1

5

8

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

� Add edge between vtx not in U.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

� Add edge between vtx not in U.

Example. This method takes the
Prüfer sequence (2, 6, 1, 2, 9, 1, 6)
and returns our original T .

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

� Add edge between vtx not in U.

Example. This method takes the
Prüfer sequence (2, 6, 1, 2, 9, 1, 6)
and returns our original T .

(2,6,1,2,9,1,6) () (3,2)

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

� Add edge between vtx not in U.

Example. This method takes the
Prüfer sequence (2, 6, 1, 2, 9, 1, 6)
and returns our original T .

(2,6,1,2,9,1,6) () (3,2)
(6,1,2,9,1,6) (3) (4,6)

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

� Add edge between vtx not in U.

Example. This method takes the
Prüfer sequence (2, 6, 1, 2, 9, 1, 6)
and returns our original T .

(2,6,1,2,9,1,6) () (3,2)
(6,1,2,9,1,6) (3) (4,6)
(1,2,9,1,6) (3,4) (5,1)

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

� Add edge between vtx not in U.

Example. This method takes the
Prüfer sequence (2, 6, 1, 2, 9, 1, 6)
and returns our original T .

(2,6,1,2,9,1,6) () (3,2)
(6,1,2,9,1,6) (3) (4,6)
(1,2,9,1,6) (3,4) (5,1)
(2,9,1,6) (3,4,5) (7,2)

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

� Add edge between vtx not in U.

Example. This method takes the
Prüfer sequence (2, 6, 1, 2, 9, 1, 6)
and returns our original T .

(2,6,1,2,9,1,6) () (3,2)
(6,1,2,9,1,6) (3) (4,6)
(1,2,9,1,6) (3,4) (5,1)
(2,9,1,6) (3,4,5) (7,2)
(9,1,6) (3,4,5,7) (2,9)

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

� Add edge between vtx not in U.

Example. This method takes the
Prüfer sequence (2, 6, 1, 2, 9, 1, 6)
and returns our original T .

(2,6,1,2,9,1,6) () (3,2)
(6,1,2,9,1,6) (3) (4,6)
(1,2,9,1,6) (3,4) (5,1)
(2,9,1,6) (3,4,5) (7,2)
(9,1,6) (3,4,5,7) (2,9)
(1,6) (2,3,4,5,7) (8,1)

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

� Add edge between vtx not in U.

Example. This method takes the
Prüfer sequence (2, 6, 1, 2, 9, 1, 6)
and returns our original T .

(2,6,1,2,9,1,6) () (3,2)
(6,1,2,9,1,6) (3) (4,6)
(1,2,9,1,6) (3,4) (5,1)
(2,9,1,6) (3,4,5) (7,2)
(9,1,6) (3,4,5,7) (2,9)
(1,6) (2,3,4,5,7) (8,1)
(6) (2,3,4,5,7,8) (1,6)

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

� Add edge between vtx not in U.

Example. This method takes the
Prüfer sequence (2, 6, 1, 2, 9, 1, 6)
and returns our original T .

(2,6,1,2,9,1,6) () (3,2)
(6,1,2,9,1,6) (3) (4,6)
(1,2,9,1,6) (3,4) (5,1)
(2,9,1,6) (3,4,5) (7,2)
(9,1,6) (3,4,5,7) (2,9)
(1,6) (2,3,4,5,7) (8,1)
(6) (2,3,4,5,7,8) (1,6)
() (1,2,3,4,5,7,8) (6,9)

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

� Add edge between vtx not in U.

Example. This method takes the
Prüfer sequence (2, 6, 1, 2, 9, 1, 6)
and returns our original T .

(2,6,1,2,9,1,6) () (3,2)
(6,1,2,9,1,6) (3) (4,6)
(1,2,9,1,6) (3,4) (5,1)
(2,9,1,6) (3,4,5) (7,2)
(9,1,6) (3,4,5,7) (2,9)
(1,6) (2,3,4,5,7) (8,1)
(6) (2,3,4,5,7,8) (1,6)
() (1,2,3,4,5,7,8) (6,9)

Trees — §6.2 132

Counting Binary Trees

Definition: A binary tree has a special vertex called its root.
From this vertex at the top, the rest of the tree is drawn downward.
Each vertex may have a left child and/or a right child.

Trees — §6.2 132

Counting Binary Trees

Definition: A binary tree has a special vertex called its root.
From this vertex at the top, the rest of the tree is drawn downward.
Each vertex may have a left child and/or a right child.

Example. The number of binary trees with 1, 2, 3 vertices is:

Trees — §6.2 132

Counting Binary Trees

Definition: A binary tree has a special vertex called its root.
From this vertex at the top, the rest of the tree is drawn downward.
Each vertex may have a left child and/or a right child.

Example. The number of binary trees with 1, 2, 3 vertices is:

Example. The number of binary trees with 4 vertices is:

Trees — §6.2 132

Counting Binary Trees

Definition: A binary tree has a special vertex called its root.
From this vertex at the top, the rest of the tree is drawn downward.
Each vertex may have a left child and/or a right child.

Example. The number of binary trees with 1, 2, 3 vertices is:

Example. The number of binary trees with 4 vertices is:

Conjecture: The number of binary trees on n vertices is .

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:

� Has no vertices (x0) –or–
� Breaks down as one root vertex (x)

along with two binary trees beneath (B(x)2).

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:

� Has no vertices (x0) –or–
� Breaks down as one root vertex (x)

along with two binary trees beneath (B(x)2).

Therefore, the generating function for binary trees satisfies

B(x) = 1 + xB(x)2.

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:

� Has no vertices (x0) –or–
� Breaks down as one root vertex (x)

along with two binary trees beneath (B(x)2).

Therefore, the generating function for binary trees satisfies

B(x) = 1 + xB(x)2. We conclude bn = 1
n+1

(2n
n

)
.

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:

� Has no vertices (x0) –or–
� Breaks down as one root vertex (x)

along with two binary trees beneath (B(x)2).

Therefore, the generating function for binary trees satisfies

B(x) = 1 + xB(x)2. We conclude bn = 1
n+1

(2n
n

)
.

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:

� Has no vertices (x0) –or–
� Breaks down as one root vertex (x)

along with two binary trees beneath (B(x)2).

Therefore, the generating function for binary trees satisfies

B(x) = 1 + xB(x)2. We conclude bn = 1
n+1

(2n
n

)
.

Another way: Find a recurrence for bn.

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:

� Has no vertices (x0) –or–
� Breaks down as one root vertex (x)

along with two binary trees beneath (B(x)2).

Therefore, the generating function for binary trees satisfies

B(x) = 1 + xB(x)2. We conclude bn = 1
n+1

(2n
n

)
.

Another way: Find a recurrence for bn. Note:

b4 = b0b3 + b1b2 + b2b1 + b3b0.

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:

� Has no vertices (x0) –or–
� Breaks down as one root vertex (x)

along with two binary trees beneath (B(x)2).

Therefore, the generating function for binary trees satisfies

B(x) = 1 + xB(x)2. We conclude bn = 1
n+1

(2n
n

)
.

Another way: Find a recurrence for bn. Note:

b4 = b0b3 + b1b2 + b2b1 + b3b0.

In general, bn =
∑n−1

i=0 bibn−1−i .

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:

� Has no vertices (x0) –or–
� Breaks down as one root vertex (x)

along with two binary trees beneath (B(x)2).

Therefore, the generating function for binary trees satisfies

B(x) = 1 + xB(x)2. We conclude bn = 1
n+1

(2n
n

)
.

Another way: Find a recurrence for bn. Note:

b4 = b0b3 + b1b2 + b2b1 + b3b0.

In general, bn =
∑n−1

i=0 bibn−1−i . Therefore, B(x) equals

1 +
∑
n≥1

(n−1∑
i=0

bibn−1−i

)
xn

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:

� Has no vertices (x0) –or–
� Breaks down as one root vertex (x)

along with two binary trees beneath (B(x)2).

Therefore, the generating function for binary trees satisfies

B(x) = 1 + xB(x)2. We conclude bn = 1
n+1

(2n
n

)
.

Another way: Find a recurrence for bn. Note:

b4 = b0b3 + b1b2 + b2b1 + b3b0.

In general, bn =
∑n−1

i=0 bibn−1−i . Therefore, B(x) equals

1 +
∑
n≥1

(n−1∑
i=0

bibn−1−i

)
xn = 1 + x

∑
n≥1

(n−1∑
i=0

bibn−1−i

)
xn−1 =

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:

� Has no vertices (x0) –or–
� Breaks down as one root vertex (x)

along with two binary trees beneath (B(x)2).

Therefore, the generating function for binary trees satisfies

B(x) = 1 + xB(x)2. We conclude bn = 1
n+1

(2n
n

)
.

Another way: Find a recurrence for bn. Note:

b4 = b0b3 + b1b2 + b2b1 + b3b0.

In general, bn =
∑n−1

i=0 bibn−1−i . Therefore, B(x) equals

1 +
∑
n≥1

(n−1∑
i=0

bibn−1−i

)
xn = 1 + x

∑
n≥1

(n−1∑
i=0

bibn−1−i

)
xn−1 =

1+x
∑
k≥0

(k∑
i=0

bibk−i

)
xk =

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:

� Has no vertices (x0) –or–
� Breaks down as one root vertex (x)

along with two binary trees beneath (B(x)2).

Therefore, the generating function for binary trees satisfies

B(x) = 1 + xB(x)2. We conclude bn = 1
n+1

(2n
n

)
.

Another way: Find a recurrence for bn. Note:

b4 = b0b3 + b1b2 + b2b1 + b3b0.

In general, bn =
∑n−1

i=0 bibn−1−i . Therefore, B(x) equals

1 +
∑
n≥1

(n−1∑
i=0

bibn−1−i

)
xn = 1 + x

∑
n≥1

(n−1∑
i=0

bibn−1−i

)
xn−1 =

1+x
∑
k≥0

(k∑
i=0

bibk−i

)
xk = 1+x

(∑
k≥0

bkxk

)(∑
k≥0

bkxk

)
= 1+xB(x)2.

