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Counting Trees

Question: How many trees are there?

Answer: It depends.

� Are there restrictions?

� We’ll end by counting binary trees.

� Are the vertices labeled?

� Does this matter? (Oh, yes!)
� Unlabeled vs. Labeled: (A000055 vs. A000272)

� We can label every unlabeled tree in some number of ways. �
� There is no nice formula for the number of unlabeled trees.
� There is an amazingly nice formula for the number of labeled trees.
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� Start with the empty list L = ().
� Repeat the following steps until the tree has only two vertices:

� Find the leaf v with the smallest label.
� Append the label of v ’s neighbor to L.
� Remove v from the tree.

Example. The Prüfer sequence
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(2,6,1,2,9,1,6) () (3,2)
(6,1,2,9,1,6) (3) (4,6)
(1,2,9,1,6) (3,4) (5,1)
(2,9,1,6) (3,4,5) (7,2)
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Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

� Add edge between vtx not in U.

Example. This method takes the
Prüfer sequence (2, 6, 1, 2, 9, 1, 6)
and returns our original T .

(2,6,1,2,9,1,6) () (3,2)
(6,1,2,9,1,6) (3) (4,6)
(1,2,9,1,6) (3,4) (5,1)
(2,9,1,6) (3,4,5) (7,2)
(9,1,6) (3,4,5,7) (2,9)
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Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

� Add edge between vtx not in U.

Example. This method takes the
Prüfer sequence (2, 6, 1, 2, 9, 1, 6)
and returns our original T .

(2,6,1,2,9,1,6) () (3,2)
(6,1,2,9,1,6) (3) (4,6)
(1,2,9,1,6) (3,4) (5,1)
(2,9,1,6) (3,4,5) (7,2)
(9,1,6) (3,4,5,7) (2,9)
(1,6) (2,3,4,5,7) (8,1)
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Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

� Add edge between vtx not in U.

Example. This method takes the
Prüfer sequence (2, 6, 1, 2, 9, 1, 6)
and returns our original T .

(2,6,1,2,9,1,6) () (3,2)
(6,1,2,9,1,6) (3) (4,6)
(1,2,9,1,6) (3,4) (5,1)
(2,9,1,6) (3,4,5) (7,2)
(9,1,6) (3,4,5,7) (2,9)
(1,6) (2,3,4,5,7) (8,1)
(6) (2,3,4,5,7,8) (1,6)
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Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

� Add edge between vtx not in U.

Example. This method takes the
Prüfer sequence (2, 6, 1, 2, 9, 1, 6)
and returns our original T .

(2,6,1,2,9,1,6) () (3,2)
(6,1,2,9,1,6) (3) (4,6)
(1,2,9,1,6) (3,4) (5,1)
(2,9,1,6) (3,4,5) (7,2)
(9,1,6) (3,4,5,7) (2,9)
(1,6) (2,3,4,5,7) (8,1)
(6) (2,3,4,5,7,8) (1,6)
() (1,2,3,4,5,7,8) (6,9)
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Counting Labeled Trees

There is an inverse rule

g :

{
lists L of length (n − 2)
taken from {1, . . . , n}

}
→

{
labeled trees T
with n vertices

}
.

Given a list L, create a new list U (used vertices) and tree T :

� Start with the empty list U = ().
� Repeat the following steps until L is empty:

� Find the least vertex u on neither L nor U –and–
Find the first vertex l on list L.

� Add the edge (u, l) to T .
� Add u to the list U –and–

Remove l from L.

� Add edge between vtx not in U.

Example. This method takes the
Prüfer sequence (2, 6, 1, 2, 9, 1, 6)
and returns our original T .

(2,6,1,2,9,1,6) () (3,2)
(6,1,2,9,1,6) (3) (4,6)
(1,2,9,1,6) (3,4) (5,1)
(2,9,1,6) (3,4,5) (7,2)
(9,1,6) (3,4,5,7) (2,9)
(1,6) (2,3,4,5,7) (8,1)
(6) (2,3,4,5,7,8) (1,6)
() (1,2,3,4,5,7,8) (6,9)
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Counting Binary Trees

Definition: A binary tree has a special vertex called its root.
From this vertex at the top, the rest of the tree is drawn downward.
Each vertex may have a left child and/or a right child.
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Counting Binary Trees

Definition: A binary tree has a special vertex called its root.
From this vertex at the top, the rest of the tree is drawn downward.
Each vertex may have a left child and/or a right child.

Example. The number of binary trees with 1, 2, 3 vertices is:

Example. The number of binary trees with 4 vertices is:

Conjecture: The number of binary trees on n vertices is .
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Counting Binary Trees

Proof: Every binary tree either:

� Has no vertices (x0) –or–
� Breaks down as one root vertex (x)

along with two binary trees beneath (B(x)2).
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i=0 bibn−1−i .
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Proof: Every binary tree either:

� Has no vertices (x0) –or–
� Breaks down as one root vertex (x)

along with two binary trees beneath (B(x)2).

Therefore, the generating function for binary trees satisfies

B(x) = 1 + xB(x)2. We conclude bn = 1
n+1

(2n
n

)
.

Another way: Find a recurrence for bn. Note:
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Counting Binary Trees

Proof: Every binary tree either:

� Has no vertices (x0) –or–
� Breaks down as one root vertex (x)

along with two binary trees beneath (B(x)2).

Therefore, the generating function for binary trees satisfies

B(x) = 1 + xB(x)2. We conclude bn = 1
n+1

(2n
n

)
.

Another way: Find a recurrence for bn. Note:

b4 = b0b3 + b1b2 + b2b1 + b3b0.
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∑
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Proof: Every binary tree either:

� Has no vertices (x0) –or–
� Breaks down as one root vertex (x)

along with two binary trees beneath (B(x)2).

Therefore, the generating function for binary trees satisfies

B(x) = 1 + xB(x)2. We conclude bn = 1
n+1

(2n
n

)
.

Another way: Find a recurrence for bn. Note:

b4 = b0b3 + b1b2 + b2b1 + b3b0.

In general, bn =
∑n−1

i=0 bibn−1−i . Therefore, B(x) equals

1 +
∑
n≥1

( n−1∑
i=0

bibn−1−i

)
xn = 1 + x

∑
n≥1

( n−1∑
i=0

bibn−1−i

)
xn−1 =

1+x
∑
k≥0

( k∑
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)
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( ∑
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)(∑
k≥0
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)
= 1+xB(x)2.


