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Counting Trees

Question: How many trees are there?
Answer: It depends.
» Are there restrictions?
» We'll end by counting binary trees.
» Are the vertices labeled?

» Does this matter? (Oh, yes!)
» Unlabeled vs. Labeled: (A000055 vs. A000272)

% We can label every unlabeled tree in some number of ways. %

» There is no nice formula for the number of unlabeled trees.
» There is an amazingly nice formula for the number of labeled trees.
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Proof. We will construct a bijection between:
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Example. The Priifer sequence
of this tree is (2,6,1,2,9,1,6).
% This rule is well defined.
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Remove / from L (12916) (34) (51)
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and returns our original T.
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There is an inverse rule

lists L of length (n —2) labeled trees T
taken from {1,...,n} with n vertices
Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U —and-

Find the first vertex / on list L.

2,6,1,29,1,6 3,2
» Add the edge (u,/) to T. E6 12.0.1.6) ) (3()) E4 6;

» Add v to the list U —and- ~ ————"""1 :
R (1,2,9,1,6) (34) (51)

emove / from L.

) (29,1,6) (3.45) (7.2)
» Add edge between vtx not in U. 9.1.6) (3457) (2.9)
Example. This method takes the (1.6) (2,3,457) (81)
Priifer sequence (2,6,1,2,9,1,6) (6) (2,345738) (16)
and returns our original T. (0 (1234578) (69)
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Counting Labeled Trees

There is an inverse rule

[ lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U —and-

Find the first vertex / on list L.

2,6,1,29,1,6 3,2
» Add the edge (u,/) to T. E6 12.0.1.6) ) (3()) E4 6;

» Add v to the list U —and—  ——"—"—"""1 :
R (1,2,9,1,6) (3.4) | (51)

emove / from L.

) (2,9,1,6) (3.45) | (7,2)
» Add edge between vtx not in U. 9.1.6) (3457) | (2.9)
Example. This method takes the (1.6) (2,3,457) | (81)
Priifer sequence (2,6,1,2,9,1,6) (6) (2,3,45738) | (16)
and returns our original T. 0 (12345738) | (6.9
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Counting Binary Trees

Definition: A binary tree has a special vertex called its root.
From this vertex at the top, the rest of the tree is drawn downward.
Each vertex may have a left child and/or a right child.
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Example. The number of binary trees with 1,2, 3 vertices is:
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Counting Binary Trees

Definition: A binary tree has a special vertex called its root.
From this vertex at the top, the rest of the tree is drawn downward.
Each vertex may have a left child and/or a right child.

Example. The number of binary trees with 1,2, 3 vertices is:

Example. The number of binary trees with 4 vertices is:



Trees — §6.2 132

Counting Binary Trees

Definition: A binary tree has a special vertex called its root.
From this vertex at the top, the rest of the tree is drawn downward.
Each vertex may have a left child and/or a right child.

Example. The number of binary trees with 1,2, 3 vertices is:

Example. The number of binary trees with 4 vertices is:

Conjecture: The number of binary trees on n vertices is
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Counting Binary Trees

Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
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along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)?.
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Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)>. We conclude b, = -5 (%7).
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Counting Binary Trees

Proof: Every binary tree either:
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» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)>. We conclude b, = -5 (%7). ®
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» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
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B(x) = 1+ xB(x)>. We conclude b, = -5 (%7). ®

Another way: Find a recurrence for by,.
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Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)>. We conclude b, = -5 (%7). ®

Another way: Find a recurrence for b,. Note:

by = bobs + bi1by + boby + bsby.
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Counting Binary Trees

Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)>. We conclude b, = -5 (%7). ®

Another way: Find a recurrence for b,. Note:

by = bobs + bi1by + boby + bsby.
In general, b, = 373 biby_1_;.
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Counting Binary Trees

Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)>. We conclude b, = -5 (%7). ®

Another way: Find a recurrence for b,. Note:

by = bgbs + bi1by + boby + bsbg.
In general, b, = Y27 bib,_1_;. Therefore, B(x) equals

1+Z<ben 1 )

n>1
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Counting Binary Trees

Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)>. We conclude b, = -5 (%7). ®

Another way: Find a recurrence for b,. Note:
by = bgbs + bi1by + boby + bsbg.
In general, b, = Y27 bib,_1_;. Therefore, B(x) equals

1+Z<ben1,)x —1+x2(2bbn1,> =

n>1 n>1
k

1+x > (Zb,bk ) =

k>0
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Counting Binary Trees

Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)>. We conclude b, = -5 (%7). ®

Another way: Find a recurrence for b,. Note:

by = bgbs + bi1by + boby + bsbg.
In general, b, = Y27 bib,_1_;. Therefore, B(x) equals

1+Z<ben1,)x —1+x2(2bbn1,> =

n>1 n>1
k
1—|—XZ (Z biby_ )xk = ].—{—X(Z bkxk> (Z bkxk> = 1+XB(X)2.
k>0 k>0 k>0



