Trees — §6.2 128

Graph Theory

Definition: A graph G = (V, E) is made up
of a set of vertices V and a set of edges E.

Trees — §6.2

128

Graph Theory

Definition: A graph G = (V, E) is made up
of a set of vertices V and a set of edges E.

Example. G = (V,E)
where V = {v,w, x, y},
E = {vw, vx, vy, wx}.

Trees — §6.2 128
Graph Theory
Definition: A graph G = (V,E)is made up | Example. G = (V,E)

of a set of vertices V and a set of edges E. | where V = {v,w,x,y},

Think of a vertex v as a dot and an edge E = {vw, vx, vy, wx}.

€ = vw as a curve connecting v and w.

Trees — §6.2 128

Graph Theory

Definition: A graph G = (V,E)is made up | Example. G = (V,E)
of a set of vertices V and a set of edges E. | where V = {v,w,x,y},

Think of a vertex v as a dot and an edge E = {w, vx, vy, wx}.

€ = vw as a curve connecting v and w.

A graph is connected if for every two ver-
tices v and w, there is a path from v to w.

Trees — §6.2 128

Graph Theory

Definition: A graph G = (V,E)is made up | Example. G = (V,E)
of a set of vertices V and a set of edges E. | where V = {v,w,x,y},

Think of a vertex v as a dot and an edge E = {w, vx, vy, wx}.

€ = vw as a curve connecting v and w.

A graph is connected if for every two ver-
tices v and w, there is a path from v to w.

T/F: G is connected.

Trees — §6.2

128

Graph Theory

Definition: A graph G = (V, E) is made up
of a set of vertices V and a set of edges E.

Think of a vertex v as a dot and an edge
€ = vw as a curve connecting v and w.

A graph is connected if for every two ver-
tices v and w, there is a path from v to w.

The degree of a vertex v is the number of
edges connected to v.

A leaf is a vertex with degree 1.

Example. G = (V,E)
where V = {v,w, x, y},
E = {vw, vx, vy, wx}.

T/F: G is connected.

Trees — §6.2

128

Graph Theory

Definition: A graph G = (V, E) is made up
of a set of vertices V and a set of edges E.

Think of a vertex v as a dot and an edge
€ = vw as a curve connecting v and w.

A graph is connected if for every two ver-
tices v and w, there is a path from v to w.

The degree of a vertex v is the number of
edges connected to v.

A leaf is a vertex with degree 1.

Example. G = (V,E)
where V = {v,w, x, y},
E = {vw, vx, vy, wx}.

deg v =
deg y =
T/F: G is connected.

Trees — §6.2

128

Graph Theory

Definition: A graph G = (V, E) is made up
of a set of vertices V and a set of edges E.

Think of a vertex v as a dot and an edge
€ = vw as a curve connecting v and w.

A graph is connected if for every two ver-
tices v and w, there is a path from v to w.

The degree of a vertex v is the number of
edges connected to v.

A leaf is a vertex with degree 1.

Example. G = (V,E)
where V = {v,w, x, y},
E = {vw, vx, vy, wx}.

deg v =
deg y =
T/F: G is connected.

A path is a set of edges

inaline”: {viva,vava, ..., vk—1vk}

A cycle is a set of edges “in a circle”: {vivo, vava, ..., Vk_1Vk, VkV1}

Trees — §6.2

128

Graph Theory

Definition: A graph G = (V, E) is made up
of a set of vertices V and a set of edges E.

Think of a vertex v as a dot and an edge
€ = vw as a curve connecting v and w.

A graph is connected if for every two ver-
tices v and w, there is a path from v to w.

The degree of a vertex v is the number of
edges connected to v.

A leaf is a vertex with degree 1.

Example. G = (V,E)
where V = {v,w, x, y},
E = {vw, vx, vy, wx}.

deg v =

deg y =

T/F: G is connected.
T/F: G has a cycle.

A path is a set of edges “in a line": {viva,vavs, ..., vk_1vk}
A cycle is a set of edges “in a circle”: {vivo, vava, ..., Vk_1Vk, VkV1}

Trees — §6.2

128

Graph Theory

Definition: A graph G = (V, E) is made up
of a set of vertices V and a set of edges E.

Think of a vertex v as a dot and an edge
€ = vw as a curve connecting v and w.

A graph is connected if for every two ver-
tices v and w, there is a path from v to w.

The degree of a vertex v is the number of
edges connected to v.

A leaf is a vertex with degree 1.

Example. G = (V,E)
where V = {v,w, x, y},
E = {vw, vx, vy, wx}.

deg v =

deg y =

T/F: G is connected.
T/F: G has a cycle.

A path is a set of edges

inaline”: {viva,vava, ..., vk—1vk}

A cycle is a set of edges “in a circle”: {vivo, vava, ..., Vk_1Vk, VkV1}

A tree is a connected graph containing no cycles.
A forest is a graph containing no cycles. (may not be connected)

Trees — §6.2

128

Graph Theory

Definition: A graph G = (V, E) is made up
of a set of vertices V and a set of edges E.

Think of a vertex v as a dot and an edge
€ = vw as a curve connecting v and w.

A graph is connected if for every two ver-
tices v and w, there is a path from v to w.

The degree of a vertex v is the number of
edges connected to v.

A leaf is a vertex with degree 1.

Example. G = (V,E)
where V = {v,w, x, y},
E = {vw, vx, vy, wx}.

deg v =
deg y =
T/F: G is connected.

T/F: G has a cycle.
T/F: G is a tree.

A path is a set of edges

inaline”: {viva,vava, ..., vk—1vk}

A cycle is a set of edges “in a circle”: {vivo, vava, ..., Vk_1Vk, VkV1}

A tree is a connected graph containing no cycles.
A forest is a graph containing no cycles. (may not be connected)

Trees — §6.2 129

Counting Trees

Question: How many trees are there?

Trees — §6.2 129

Counting Trees

Question: How many trees are there?

Answer: It depends.

Trees — §6.2 129

Counting Trees

Question: How many trees are there?
Answer: It depends.
> Are there restrictions?

» Are the vertices labeled?

Trees — §6.2 129

Counting Trees

Question: How many trees are there?
Answer: It depends.
» Are there restrictions?
» We'll end by counting binary trees.
» Are the vertices labeled?

Trees — §6.2 129

Counting Trees

Question: How many trees are there?
Answer: It depends.
» Are there restrictions?
» We'll end by counting binary trees.
» Are the vertices labeled?
» Does this matter? (Oh, yes!)

Trees — §6.2 129

Counting Trees

Question: How many trees are there?
Answer: It depends.
» Are there restrictions?
» We'll end by counting binary trees.
» Are the vertices labeled?

» Does this matter? (Oh, yes!)
» Unlabeled vs. Labeled: (A000055 vs. A000272)

Trees — §6.2 129

Counting Trees

Question: How many trees are there?
Answer: It depends.
» Are there restrictions?
» We'll end by counting binary trees.
» Are the vertices labeled?

» Does this matter? (Oh, yes!)
» Unlabeled vs. Labeled: (A000055 vs. A000272)

% We can label every unlabeled tree in some number of ways. %

Trees — §6.2 129

Counting Trees

Question: How many trees are there?
Answer: It depends.
» Are there restrictions?
» We'll end by counting binary trees.
» Are the vertices labeled?

» Does this matter? (Oh, yes!)
» Unlabeled vs. Labeled: (A000055 vs. A000272)

% We can label every unlabeled tree in some number of ways. %

» There is no nice formula for the number of unlabeled trees.

Trees — §6.2 129

Counting Trees

Question: How many trees are there?
Answer: It depends.
» Are there restrictions?
» We'll end by counting binary trees.
» Are the vertices labeled?

» Does this matter? (Oh, yes!)
» Unlabeled vs. Labeled: (A000055 vs. A000272)

% We can label every unlabeled tree in some number of ways. %

» There is no nice formula for the number of unlabeled trees.
» There is an amazingly nice formula for the number of labeled trees.

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is . (drumroll....)

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is n"~2. (drumroll....)

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is n"~2. (drumroll....)

Proof. We will construct a bijection between:

labeled trees T lists L of length (n —2)
f: . . — .
with n vertices taken from {1,...,n}

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is n"~2. (drumroll....)

Proof. We will construct a bijection between:

labeled trees T lists L of length (n —2)
f: . . — .
with n vertices taken from {1,...,n}

Given a tree T, create a list L called its Priifer sequence:

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is n"~2. (drumroll....)

Proof. We will construct a bijection between:

labeled trees T lists L of length (n —2)
f: . . — .
with n vertices taken from {1,...,n}

Given a tree T, create a list L called its Priifer sequence:

» Start with the empty list L = ().
» Repeat the following steps until the tree has only two vertices:

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is n"~2. (drumroll....)

Proof. We will construct a bijection between:

labeled trees T lists L of length (n —2)
f: . . — .
with n vertices taken from {1,...,n}

Given a tree T, create a list L called its Priifer sequence:

» Start with the empty list L = ().
» Repeat the following steps until the tree has only two vertices:
» Find the leaf v with the smallest label.

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is n"~2. (drumroll....)

Proof. We will construct a bijection between:

labeled trees T lists L of length (n —2)
f: . . — .
with n vertices taken from {1,...,n}

Given a tree T, create a list L called its Priifer sequence:

» Start with the empty list L = ().
» Repeat the following steps until the tree has only two vertices:

» Find the leaf v with the smallest label.
» Append the label of v's neighbor to L.

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is n"~2. (drumroll....)

Proof. We will construct a bijection between:

labeled trees T lists L of length (n —2)
f: . . — .
with n vertices taken from {1,...,n}

Given a tree T, create a list L called its Priifer sequence:

» Start with the empty list L = ().
» Repeat the following steps until the tree has only two vertices:

» Find the leaf v with the smallest label.
» Append the label of v's neighbor to L.
» Remove v from the tree.

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is n"~2. (drumroll....)

Proof. We will construct a bijection between:

labeled trees T lists L of length (n —2)
f: . ; — .
with n vertices taken from {1,...,n}

Given a tree T, create a list L called its Priifer sequence:

» Start with the empty list L = ().

> Repeat the following steps until the tree has only two vertices:
» Find the leaf v with the smaliest label.
» Append the label of v's neighbor to L.
» Remove v from the tree.

Example. The Priifer sequence
of this tree is (2,6,1,2,9,1,6).

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is n"~2. (drumroll....)

Proof. We will construct a bijection between:

labeled trees T lists L of length (n —2)
f: . ; — .
with n vertices taken from {1,...,n}

Given a tree T, create a list L called its Priifer sequence:

» Start with the empty list L = ().

> Repeat the following steps until the tree has only two vertices:
» Find the leaf v with the smaliest label.
» Append the label of v's neighbor to L.
» Remove v from the tree.

Example. The Priifer sequence
of this tree is (2,6,1,2,9,1,6).

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is n"~2. (drumroll....)

Proof. We will construct a bijection between:

labeled trees T lists L of length (n —2)
f: . ; — .
with n vertices taken from {1,...,n}

Given a tree T, create a list L called its Priifer sequence:

» Start with the empty list L = ().

> Repeat the following steps until the tree has only two vertices:
» Find the leaf v with the smaliest label.
» Append the label of v's neighbor to L.
» Remove v from the tree.

Example. The Priifer sequence
of this tree is (2,6,1,2,9,1,6).

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is n"~2. (drumroll....)

Proof. We will construct a bijection between:

labeled trees T lists L of length (n —2)
f: . ; — .
with n vertices taken from {1,...,n}

Given a tree T, create a list L called its Priifer sequence:

» Start with the empty list L = ().

> Repeat the following steps until the tree has only two vertices:
» Find the leaf v with the smaliest label.
» Append the label of v's neighbor to L.
» Remove v from the tree.

Example. The Priifer sequence
of this tree is (2,6,1,2,9,1,6).

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is n"~2. (drumroll....)

Proof. We will construct a bijection between:

labeled trees T lists L of length (n —2)
f: . ; — .
with n vertices taken from {1,...,n}

Given a tree T, create a list L called its Priifer sequence:

» Start with the empty list L = ().
> Repeat the following steps until the tree has only two vertices:
» Find the leaf v with the smaliest label.
» Append the label of v's neighbor to L.
» Remove v from the tree.

Example. The Priifer sequence
of this tree is (2,6,1,2,9,1,6).

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is n"~2. (drumroll....)

Proof. We will construct a bijection between:

labeled trees T lists L of length (n —2)
f: . ; — .
with n vertices taken from {1,...,n}

Given a tree T, create a list L called its Priifer sequence:

» Start with the empty list L = ().
> Repeat the following steps until the tree has only two vertices:
» Find the leaf v with the smaliest label.
» Append the label of v's neighbor to L.
» Remove v from the tree.

Example. The Priifer sequence
of this tree is (2,6,1,2,9,1,6).

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is n"~2. (drumroll....)

Proof. We will construct a bijection between:

labeled trees T lists L of length (n —2)
f: . ; — .
with n vertices taken from {1,...,n}

Given a tree T, create a list L called its Priifer sequence:

» Start with the empty list L = ().

> Repeat the following steps until the tree has only two vertices:
» Find the leaf v with the smaliest label.
» Append the label of v's neighbor to L.
» Remove v from the tree.

Example. The Priifer sequence (D
of this tree is (2,6,1,2,9,1,6).

Trees — §6.2 130

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is n"~2. (drumroll....)

Proof. We will construct a bijection between:

labeled trees T lists L of length (n —2)
f: . ; — .
with n vertices taken from {1,...,n}

Given a tree T, create a list L called its Priifer sequence:

» Start with the empty list L = ().

> Repeat the following steps until the tree has only two vertices:
» Find the leaf v with the smaliest label.
» Append the label of v's neighbor to L.
» Remove v from the tree.

Example. The Priifer sequence
of this tree is (2,6,1,2,9,1,6).

Trees — §6.2

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is n"~2. (drumroll....)

Proof. We will construct a bijection between:

labeled trees T lists L of length (n —2)
f: . ; — .
with n vertices taken from {1,...,n}

Given a tree T, create a list L called its Priifer sequence:

» Start with the empty list L = ().

> Repeat the following steps until the tree has only two vertices:
» Find the leaf v with the smaliest label.
» Append the label of v's neighbor to L.
» Remove v from the tree.

Example. The Priifer sequence
of this tree is (2,6,1,2,9,1,6).
% This rule is well defined.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

[lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

[lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Given a list L, create a new list U (used vertices) and tree T:

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

[lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

lists L of length (n —2) labeled trees T
taken from {1,...,n} with n vertices
Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

[lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U —and—
Find the first vertex / on list L.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

[lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U —and-
Find the first vertex / on list L.
» Add the edge (uv,/) to T.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

[lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U —and—
Find the first vertex / on list L.
» Add the edge (u,/) to T.
» Add v to the list U —and—
Remove / from L.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

[lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U —and—
Find the first vertex / on list L.
» Add the edge (u,/) to T.
» Add v to the list U —and—
Remove / from L.

» Add edge between vtx not in U.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

[lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U —and—
Find the first vertex / on list L.
» Add the edge (u,/) to T.
» Add u to the list U —and-
Remove / from L.

» Add edge between vtx not in U.

Example. This method takes the
Priifer sequence (2,6,1,2,9,1,6)
and returns our original T.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

[lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U —and—
Find the first vertex / on list L.
» Add the edge (u,/) to T. (26129.16) () (32)
» Add u to the list U —and-
Remove / from L.

» Add edge between vtx not in U.

Example. This method takes the
Priifer sequence (2,6,1,2,9,1,6)
and returns our original T.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

[lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U —and—
Find the first vertex / on list L. 26129016 O (.2

» Add the edge (u,/) to T.
> Add u to the list U —and— (6.129.1.6) (3) (%6)
Remove / from L.

» Add edge between vtx not in U.
Example. This method takes the
Priifer sequence (2,6,1,2,9,1,6)
and returns our original T.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

[lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U —and—
Find the first vertex / on list L.
» Add the edge (1, /) to T. Eg?;gié)ﬁ) (3()) 53'2;
» Add u to the list U —and— e
Remove / from L. (129.16) (34) (5.1)
» Add edge between vtx not in U.

Example. This method takes the
Priifer sequence (2,6,1,2,9,1,6)
and returns our original T.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

[lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U —and—
Find the first vertex / on list L.
» Add the edge (u,/) to T. Eg?;g?é)ﬁ) (3()) E
» Add u to the list U —and- e
Remove / from L. (12916) (34) (
29,16 3,45
» Add edge between vtx not in U. ())

Example. This method takes the
Priifer sequence (2,6,1,2,9,1,6)
and returns our original T.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

[lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U —and—
Find the first vertex / on list L.
» Add the edge (u,/) to T. Eg?;g?é)ﬁ) (3()) 8 2;
» Add u to the list U —and—- = ———"2 !
Remove / from L (12916) (34) (51)
' . (2,9,1,6) (345 (7.2)
» Add edge between vtx not in U. (9.1.6) (3457) (2.9)

Example. This method takes the
Priifer sequence (2,6,1,2,9,1,6)
and returns our original T.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

[lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U —and-

Find the first vertex / on list L.
» Add the edge (u,/) to T. Eg?;g?é)ﬁ) (3()) 82;
» Add v to the list U —and- ~ ————"""1 :
Remove / from L. El 2.9, 1)6) ((3'4; E5'1;
. 2,9,1,6 3,4,5 7,2
» Add edge between vtx not in U. 9.1.6) (3457) (2.9)
Example. This method takes the (1.6) (2,3,457) (81)

Priifer sequence (2,6,1,2,9,1,6)
and returns our original T.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

[lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U —and-

Find the first vertex / on list L.

2,6,1,29,1,6 3,2
» Add the edge (u,/) to T. E6 12.0.1.6)) (3()) E4 6;

» Add v to the list U —and- ~ ————"""1 :
Remove / from L (12916) (34) (51)
’) (29,1,6) (3.45) (7.2)
» Add edge between vtx not in U. 9.1.6) (3457) (2.9)
Example. This method takes the (1.6) (2,3,457) (81)
Priifer sequence (2,6,1,2,9,1,6) (6) (23,4578) (1.6)

and returns our original T.

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

lists L of length (n —2) labeled trees T
taken from {1,...,n} with n vertices
Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U —and-

Find the first vertex / on list L.

2,6,1,29,1,6 3,2
» Add the edge (u,/) to T. E6 12.0.1.6)) (3()) E4 6;

» Add v to the list U —and- ~ ————"""1 :
R (1,2,9,1,6) (34) (51)

emove / from L.

) (29,1,6) (3.45) (7.2)
» Add edge between vtx not in U. 9.1.6) (3457) (2.9)
Example. This method takes the (1.6) (2,3,457) (81)
Priifer sequence (2,6,1,2,9,1,6) (6) (2,345738) (16)
and returns our original T. (0 (1234578) (69)

Trees — §6.2 131

Counting Labeled Trees

There is an inverse rule

[lists L of length (n — 2) _, | labeled trees T
taken from {1,...,n} with n vertices |~

Given a list L, create a new list U (used vertices) and tree T:

» Start with the empty list U = ().
» Repeat the following steps until L is empty:
» Find the least vertex u on neither L nor U —and-

Find the first vertex / on list L.

2,6,1,29,1,6 3,2
» Add the edge (u,/) to T. E6 12.0.1.6)) (3()) E4 6;

» Add v to the list U —and— ——"—"—"""1 :
R (1,2,9,1,6) (3.4) | (51)

emove / from L.

) (2,9,1,6) (3.45) | (7,2)
» Add edge between vtx not in U. 9.1.6) (3457) | (2.9)
Example. This method takes the (1.6) (2,3,457) | (81)
Priifer sequence (2,6,1,2,9,1,6) (6) (2,3,45738) | (16)
and returns our original T. 0 (12345738) | (6.9

Trees — §6.2 132

Counting Binary Trees

Definition: A binary tree has a special vertex called its root.
From this vertex at the top, the rest of the tree is drawn downward.
Each vertex may have a left child and/or a right child.

Trees — §6.2 132

Counting Binary Trees

Definition: A binary tree has a special vertex called its root.
From this vertex at the top, the rest of the tree is drawn downward.
Each vertex may have a left child and/or a right child.

Example. The number of binary trees with 1,2, 3 vertices is:

Trees — §6.2 132

Counting Binary Trees

Definition: A binary tree has a special vertex called its root.
From this vertex at the top, the rest of the tree is drawn downward.
Each vertex may have a left child and/or a right child.

Example. The number of binary trees with 1,2, 3 vertices is:

Example. The number of binary trees with 4 vertices is:

Trees — §6.2 132

Counting Binary Trees

Definition: A binary tree has a special vertex called its root.
From this vertex at the top, the rest of the tree is drawn downward.
Each vertex may have a left child and/or a right child.

Example. The number of binary trees with 1,2, 3 vertices is:

Example. The number of binary trees with 4 vertices is:

Conjecture: The number of binary trees on n vertices is

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)?.

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)>. We conclude b, = -5 (%7).

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)>. We conclude b, = -5 (%7). ®

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)>. We conclude b, = -5 (%7). ®

Another way: Find a recurrence for by,.

Trees — §6.2 133

Counting Binary Trees

Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)>. We conclude b, = -5 (%7). ®

Another way: Find a recurrence for b,. Note:

by = bobs + bi1by + boby + bsby.

Trees — §6.2

Counting Binary Trees

Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)>. We conclude b, = -5 (%7). ®

Another way: Find a recurrence for b,. Note:

by = bobs + bi1by + boby + bsby.
In general, b, = 373 biby_1_;.

Trees — §6.2

Counting Binary Trees

Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)>. We conclude b, = -5 (%7). ®

Another way: Find a recurrence for b,. Note:

by = bgbs + bi1by + boby + bsbg.
In general, b, = Y27 bib,_1_;. Therefore, B(x) equals

1+Z<ben 1)

n>1

Trees — §6.2

Counting Binary Trees

Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)>. We conclude b, = -5 (%7). ®

Another way: Find a recurrence for b,. Note:

by = bgbs + bi1by + boby + bsbg.
In general, b, = Y27 bib,_1_;. Therefore, B(x) equals

1+Z<ben1,)x —1—|—x2(2bbn1,> =

n>1 n>1

Trees — §6.2

Counting Binary Trees

Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)>. We conclude b, = -5 (%7). ®

Another way: Find a recurrence for b,. Note:
by = bgbs + bi1by + boby + bsbg.
In general, b, = Y27 bib,_1_;. Therefore, B(x) equals

1+Z<ben1,)x —1+x2(2bbn1,> =

n>1 n>1
k

1+x > (Zb,bk) =

k>0

Trees — §6.2

Counting Binary Trees

Proof: Every binary tree either:
» Has no vertices (x°) —or-
» Breaks down as one root vertex (x)
along with two binary trees beneath (B(x)?).
Therefore, the generating function for binary trees satisfies

B(x) = 1+ xB(x)>. We conclude b, = -5 (%7). ®

Another way: Find a recurrence for b,. Note:

by = bgbs + bi1by + boby + bsbg.
In general, b, = Y27 bib,_1_;. Therefore, B(x) equals

1+Z<ben1,)x —1+x2(2bbn1,> =

n>1 n>1
k
1—|—XZ (Z biby_)xk =].—{—X(Z bkxk> (Z bkxk> = 1+XB(X)2.
k>0 k>0 k>0

