Graph Theory

Definition: A graph G = (V, E) is made up of a set of vertices V and a set of edges E.

Think of a vertex v as a dot and an edge e = vw as a curve connecting v and w.

A graph is **connected** if for every two vertices v and w, there is a path from v to w.

The **degree** of a vertex v is the number of edges connected to v.

A leaf is a vertex with degree 1.

Example. G = (V, E)where $V = \{v, w, x, y\}$, $E = \{vw, vx, vy, wx\}$.

 $\deg v =$

T/F: G is connected.

T/F: G has a cycle.

T/F: G is a tree.

A path is a set of edges "in a line": $\{v_1v_2, v_2v_3, \dots, v_{k-1}v_k\}$ A cycle is a set of edges "in a circle": $\{v_1v_2, v_2v_3, \dots, v_{k-1}v_k, v_kv_1\}$

A tree is a connected graph containing no cycles.

A forest is a graph containing no cycles. (may not be connected)

Counting Trees

Question: How many trees are there?

Answer: It depends.

- ► Are there restrictions?
 - We'll end by counting binary trees.
- ► Are the vertices labeled?
 - ▶ Does this matter? (Oh, yes!)
 - ► Unlabeled vs. Labeled: (A000055 vs. A000272)

- ★ We can label every unlabeled tree in *some number* of ways. ★
 - There is no nice formula for the number of unlabeled trees.
 - ► There is an amazingly nice formula for the number of labeled trees.

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is . (drumroll....)

Proof. We will construct a bijection between:

$$f: \left\{ \begin{array}{c} \text{labeled trees } T \\ \text{with } n \text{ vertices} \end{array} \right\}
ightarrow \left\{ \begin{array}{c} \text{lists } L \text{ of length } (n-2) \\ \text{taken from } \{1, \dots, n\} \end{array} \right\}.$$

Given a tree T, create a list L called its **Prüfer sequence**:

- ightharpoonup Start with the empty list L=().
- ► Repeat the following steps until the tree has only two vertices:
 - Find the leaf v with the smallest label.
 - ▶ **Append** the label of v's neighbor to L.
 - ▶ **Remove** *v* from the tree.

Example. The Prüfer sequence of this tree is (2, 6, 1, 2, 9, 1, 6).

★ This rule is well defined. ★

130

Counting Labeled Trees

There is an inverse rule

$$g: \left\{ \begin{array}{c} \text{lists L of length } (n-2) \\ \text{taken from } \{1,\ldots,n\} \end{array} \right\}
ightarrow \left\{ \begin{array}{c} \text{labeled trees T} \\ \text{with n vertices} \end{array} \right\}.$$

Given a list L, create a new list U (used vertices) and tree T:

- ightharpoonup Start with the empty list U=().
- ▶ Repeat the following steps until *L* is empty:
 - ► Find the least vertex *u* on neither *L* nor *U* —and—

 Find the first vertex *l* on list *L*.
 - ▶ Add the edge (u, l) to T.
 - ► Add *u* to the list *U* –and– Remove *l* from *L*.
- ightharpoonup Add edge between vtx not in U.

Example. This method takes the Prüfer sequence (2, 6, 1, 2, 9, 1, 6) and returns our original T.

(2,6,1,2,9,1,6) ()	(3,2)
(6,1,2,9,1,6) (3)	(4,6)
(1,2,9,1,6) $(3,4)$	(5,1)
(2,9,1,6) $(3,4,5)$	(7,2)
(9,1,6) $(3,4,5,7)$	(2,9)
(1,6) $(2,3,4,5,7)$	(8,1)
(6) $(2,3,4,5,7,8)$	(1,6)
() (1,2,3,4,5,7,8)	(6,9)

131

Counting Binary Trees

Definition: A binary tree has a special vertex called its root. From this vertex at the top, the rest of the tree is drawn downward. Each vertex may have a **left child** and/or a **right child**.

Example. The number of binary trees with 1, 2, 3 vertices is:

Example. The number of binary trees with 4 vertices is:

Conjecture: The number of binary trees on *n* vertices is ______.

Counting Binary Trees

Proof: Every binary tree either:

- ▶ Has no vertices (x^0) –or–
- ▶ Breaks down as one root vertex (x) along with two binary trees beneath $(B(x)^2)$.

Therefore, the generating function for binary trees satisfies

$$B(x) = 1 + xB(x)^2$$
. We conclude $b_n = \frac{1}{n+1} \binom{2n}{n}$.

Another way: Find a recurrence for b_n . Note:

$$b_4 = b_0b_3 + b_1b_2 + b_2b_1 + b_3b_0.$$

In general, $b_n = \sum_{i=0}^{n-1} b_i b_{n-1-i}$. Therefore, B(x) equals

$$1 + \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^n = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n \ge 1} \left(\sum_{i=0}^{n-1} b_i b_{n-1-i} \right) x^{n-1} = 1 + x \sum_{n$$

$$1+x\sum_{k\geq 0} \left(\sum_{i=0}^{k} b_i b_{k-i}\right) x^k = 1+x \left(\sum_{k\geq 0} b_k x^k\right) \left(\sum_{k\geq 0} b_k x^k\right) = 1+xB(x)^2.$$