Graph Theory

Definition: A graph $G=(V, E)$ is made up of a set of vertices V and a set of edges E.

Think of a vertex v as a dot and an edge $e=v w$ as a curve connecting v and w.

A graph is connected if for every two vertices v and w, there is a path from v to w.

The degree of a vertex v is the number of edges connected to v.

A leaf is a vertex with degree 1 .

Example. $G=(V, E)$ where $V=\{v, w, x, y\}$, $E=\{v w, v x, v y, w x\}$.
$\operatorname{deg} v=$
$\operatorname{deg} y=$
T/F: G is connected.
T/F: G has a cycle.
$T / F: G$ is a tree.

A path is a set of edges "in a line": $\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{k-1} v_{k}\right\}$ A cycle is a set of edges "in a circle": $\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{k-1} v_{k}, v_{k} v_{1}\right\}$
A tree is a connected graph containing no cycles.
A forest is a graph containing no cycles. (may not be connected)

Counting Trees

Question: How many trees are there?
Answer: It depends.

- Are there restrictions?
- We'll end by counting binary trees.
- Are the vertices labeled?
- Does this matter? (Oh, yes!)
- Unlabeled vs. Labeled: (A000055 vs. A000272)
\star We can label every unlabeled tree in some number of ways. \star
- There is no nice formula for the number of unlabeled trees.
- There is an amazingly nice formula for the number of labeled trees.

Counting Labeled Trees

Thm 6.2.5 The number of labeled trees is
Proof. We will construct a bijection between:
$f:\left\{\begin{array}{c}\text { labeled trees } T \\ \text { with } n \text { vertices }\end{array}\right\} \rightarrow\left\{\begin{array}{c}\text { lists } L \text { of length }(n-2) \\ \text { taken from }\{1, \ldots, n\}\end{array}\right\}$.
Given a tree T, create a list L called its Prüfer sequence:

- Start with the empty list $L=()$.
- Repeat the following steps until the tree has only two vertices:
- Find the leaf v with the smallest label.
- Append the label of v 's neighbor to L.
- Remove v from the tree.

Example. The Prüfer sequence of this tree is $(2,6,1,2,9,1,6)$.
\star This rule is well defined.

Counting Labeled Trees

There is an inverse rule
$g:\left\{\begin{array}{c}\text { lists } L \text { of length }(n-2) \\ \text { taken from }\{1, \ldots, n\}\end{array}\right\} \rightarrow\left\{\begin{array}{c}\text { labeled trees } T \\ \text { with } n \text { vertices }\end{array}\right\}$.
Given a list L, create a new list U (used vertices) and tree T :

- Start with the empty list $U=()$.
- Repeat the following steps until L is empty:
- Find the least vertex u on neither L nor U-andFind the first vertex I on list L.
- Add the edge $(u, /)$ to T.
- Add u to the list U-andRemove / from L.
- Add edge between vtx not in U.

Example. This method takes the Prüfer sequence (2, 6, 1, 2, 9, 1, 6) and returns our original T.

| $(2,6,1,2,9,1,6)$ () $(3,2)$
 $(6,1,2,9,1,6)$ (3) $(4,6)$
 $(1,2,9,1,6)$ $(3,4)$ $(5,1)$
 $(2,9,1,6)$ $(3,4,5)$ $(7,2)$
 $(9,1,6)$ $(3,4,5,7)$ $(2,9)$
 $(1,6)$ $(2,3,4,5,7)$ $(8,1)$
 (6) $(2,3,4,5,7,8)$ $(1,6)$
 () $(1,2,3,4,5,7,8)$ $(6,9)$ \mathbf{l} |
| :--- | ---: | ---: | :--- |

Counting Binary Trees

Definition: A binary tree has a special vertex called its root.
From this vertex at the top, the rest of the tree is drawn downward.
Each vertex may have a left child and/or a right child.
Example. The number of binary trees with $1,2,3$ vertices is:

Example. The number of binary trees with 4 vertices is:

Conjecture: The number of binary trees on n vertices is \qquad .

Counting Binary Trees

Proof: Every binary tree either:

- Has no vertices (x^{0}) -or-
- Breaks down as one root vertex (x) along with two binary trees beneath $\left(B(x)^{2}\right)$.
Therefore, the generating function for binary trees satisfies $B(x)=1+x B(x)^{2} . \quad$ We conclude $b_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
Another way: Find a recurrence for b_{n}. Note:

$$
b_{4}=b_{0} b_{3}+b_{1} b_{2}+b_{2} b_{1}+b_{3} b_{0}
$$

In general, $b_{n}=\sum_{i=0}^{n-1} b_{i} b_{n-1-i}$. Therefore, $B(x)$ equals

$$
\begin{aligned}
& 1+\sum_{n \geq 1}\left(\sum_{i=0}^{n-1} b_{i} b_{n-1-i}\right) x^{n}=1+x \sum_{n \geq 1}\left(\sum_{i=0}^{n-1} b_{i} b_{n-1-i}\right) x^{n-1}= \\
& 1+x \sum_{k \geq 0}\left(\sum_{i=0}^{k} b_{i} b_{k-i}\right) x^{k}=1+x\left(\sum_{k \geq 0} b_{k} x^{k}\right)\left(\sum_{k \geq 0} b_{k} x^{k}\right)=1+x B(x)^{2} .
\end{aligned}
$$

