Tiling a board with dominos and squares

Question: How many ways are there to tile a $1 \times n$ board using only dominoes and squares?

Definition: Let $f_{n}=\#$ of ways to tile a $2 \times n$ board.
$f_{0}=1$
$f_{1}=$
$f_{2}=$
$f_{3}=$
$f_{4}=$

Tiling a board with dominos and squares

Question: How many ways are there to tile a $1 \times n$ board using only dominoes and squares?

Definition: Let $f_{n}=\#$ of ways to tile a $2 \times n$ board.
$f_{0}=1$
$f_{1}=1$
$f_{2}=$
$f_{3}=$
$f_{4}=$

Tiling a board with dominos and squares

Question: How many ways are there to tile a $1 \times n$ board using only dominoes and squares?

Definition: Let $f_{n}=\#$ of ways to tile a $2 \times n$ board.
$f_{0}=1$
$f_{1}=1$
$f_{2}=2$
$f_{3}=$
$f_{4}=$

Tiling a board with dominos and squares

Question: How many ways are there to tile a $1 \times n$ board using only dominoes and squares?

Definition: Let $f_{n}=\#$ of ways to tile a $2 \times n$ board.
$f_{0}=1$
$f_{1}=1$
$f_{2}=2$
$f_{3}=3$
$f_{4}=$

Tiling a board with dominos and squares

Question: How many ways are there to tile a $1 \times n$ board using only dominoes and squares?

Definition: Let $f_{n}=\#$ of ways to tile a $2 \times n$ board.
$f_{0}=1$
$f_{1}=1$
$f_{2}=2$
$f_{3}=3$
$f_{4}=5$

Tiling a board with dominos and squares

Question: How many ways are there to tile a $1 \times n$ board using only dominoes and squares?

Definition: Let $f_{n}=\#$ of ways to tile a $2 \times n$ board.
$f_{0}=1$
$f_{1}=1$
$f_{2}=2$
$f_{3}=3$
$f_{4}=5$

Fibonacci!

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$ \square
- $f_{n}=f_{n-1}+f_{n-2}$

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$

There are f_{n} tilings of a $1 \times n$ board
Every tiling ends in either:

- a square

- a domino

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$

There are f_{n} tilings of a $1 \times n$ board
Every tiling ends in either:

- a square

- How many?
- a domino

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$

There are f_{n} tilings of a $1 \times n$ board
Every tiling ends in either:

- a square

- How many? Fill the initial $1 \times(n-1)$ board in f_{n-1} ways.
- a domino

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$

There are f_{n} tilings of a $1 \times n$ board
Every tiling ends in either:

- a square

- How many? Fill the initial $1 \times(n-1)$ board in f_{n-1} ways.
- a domino \square
- How many?

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$

There are f_{n} tilings of a $1 \times n$ board
Every tiling ends in either:

- a square

- How many? Fill the initial $1 \times(n-1)$ board in f_{n-1} ways.
- a domino

- How many? Fill the initial $1 \times(n-2)$ board in f_{n-2} ways.

Total: $f_{n-1}+f_{n-2}$

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$

There are f_{n} tilings of a $1 \times n$ board
Every tiling ends in either:

- a square

- How many? Fill the initial $1 \times(n-1)$ board in f_{n-1} ways.
- a domino

- How many? Fill the initial $1 \times(n-2)$ board in f_{n-2} ways.

Total: $f_{n-1}+f_{n-2}$

Fibonacci identities

We have a new definition for Fibonacci:
$f_{n}=$ the number of square-domino tilings of a $1 \times n$ board.

Fibonacci identities

We have a new definition for Fibonacci:
$f_{n}=$ the number of square-domino tilings of a $1 \times n$ board.

This combinatorial interpretation of the Fibonacci numbers provides a framework to prove identities.

- Did you know that $f_{2 n}=\left(f_{n}\right)^{2}+\left(f_{n-1}\right)^{2}$?

Fibonacci identities

We have a new definition for Fibonacci:

$$
f_{n}=\text { the number of square-domino tilings of a } 1 \times n \text { board. }
$$

This combinatorial interpretation of the Fibonacci numbers provides a framework to prove identities.

- Did you know that $f_{2 n}=\left(f_{n}\right)^{2}+\left(f_{n-1}\right)^{2}$?
$\begin{array}{cccccccccccccc}f_{1} & f_{2} & f_{3} & f_{4} & f_{5} & f_{6} & f_{7} & f_{8} & f_{9} & f_{10} & f_{11} & f_{12} & f_{13} & f_{14} \\ 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144 & 233 & 377 & 610\end{array}$

$$
\begin{aligned}
& f_{8}=f_{4}^{2}+f_{3}^{2} \\
& 34=25+9
\end{aligned}
$$

Fibonacci identities

We have a new definition for Fibonacci:
$f_{n}=$ the number of square-domino tilings of a $1 \times n$ board.

This combinatorial interpretation of the Fibonacci numbers provides a framework to prove identities.

- Did you know that $f_{2 n}=\left(f_{n}\right)^{2}+\left(f_{n-1}\right)^{2}$?

$$
\begin{array}{cccccccccccccc}
f_{1} & f_{2} & f_{3} & f_{4} & f_{5} & f_{6} & f_{7} & f_{8} & f_{9} & f_{10} & f_{11} & f_{12} & f_{13} & f_{14} \\
1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144 & 233 & 377 & 610
\end{array}
$$

$$
\begin{gathered}
f_{14}=f_{7}^{2}+f_{6}^{2} \\
610=441+169
\end{gathered}
$$

Proof that $=\quad+\left(f_{n-1}\right)^{2}$

Proof. How many ways are there to tile a $1 \times(2 n)$ board?

Proof that $=\quad+\left(f_{n-1}\right)^{2}$

Proof. How many ways are there to tile a $1 \times(2 n)$ board?
Answer 1. Duh, f2n.

Proof that $=\quad+\left(f_{n-1}\right)^{2}$

Proof. How many ways are there to tile a $1 \times(2 n)$ board?
Answer 1. Duh, f2n.
Answer 2. Ask whether there is a break in the middle of the tiling:
Either there is...
Or there isn't...

Proof that $=\quad+\left(f_{n-1}\right)^{2}$

Proof. How many ways are there to tile a $1 \times(2 n)$ board?
Answer 1. Duh, f2n.
Answer 2. Ask whether there is a break in the middle of the tiling:

Proof that $=\quad+\left(f_{n-1}\right)^{2}$

Proof. How many ways are there to tile a $1 \times(2 n)$ board?
Answer 1. Duh, f2n.
Answer 2. Ask whether there is a break in the middle of the tiling:

Or there isn't...

Proof that $=\quad+\left(f_{n-1}\right)^{2}$

Proof. How many ways are there to tile a $1 \times(2 n)$ board?
Answer 1. Duh, f2n.
Answer 2. Ask whether there is a break in the middle of the tiling:

For a total of $\left(f_{n}\right)^{2}+\left(f_{n-1}\right)^{2}$ tilings.

Proof that

Proof. How many ways are there to tile a $1 \times(2 n)$ board?
Answer 1. Duh, $f_{2 n}$.
Answer 2. Ask whether there is a break in the middle of the tiling:

For a total of $\left(f_{n}\right)^{2}+\left(f_{n-1}\right)^{2}$ tilings.
We counted $f_{2 n}$ in two different ways, so they must be equal.

Proof that $=\quad+\left(f_{n-1}\right)^{2}$

Proof. How many ways are there to tile a $1 \times(2 n)$ board?
Answer 1. Duh, f2n.
Answer 2. Ask whether there is a break in the middle of the tiling:

For a total of $\left(f_{n}\right)^{2}+\left(f_{n-1}\right)^{2}$ tilings.
We counted $f_{2 n}$ in two different ways, so they must be equal.

Further reading:

A Arthur T. Benjamin and Jennifer J. Quinn
Proofs that Really Count, MAA Press, 2003.

