

Definition: Let $f_n = \#$ of ways to tile a $2 \times n$ board.

Definition: Let $f_n = \#$ of ways to tile a $2 \times n$ board.

Definition: Let $f_n = \#$ of ways to tile a $2 \times n$ board.

Definition: Let $f_n = \#$ of ways to tile a $2 \times n$ board.

Definition: Let $f_n = \#$ of ways to tile a $2 \times n$ board.

Definition: Let $f_n = \#$ of ways to tile a $2 \times n$ board.

Fibonacci numbers f_n satisfy

- $f_0 = f_1 = 1$
- $\blacktriangleright f_n = f_{n-1} + f_{n-2}$

Fibonacci numbers f_n satisfy

 $\bullet \ f_0 = f_1 = 1 \qquad \checkmark$

$$\blacktriangleright f_n = f_{n-1} + f_{n-2}$$

Fibonacci numbers f_n satisfy

- $\bullet \ f_0 = f_1 = 1 \qquad \checkmark$
- $\blacktriangleright f_n = f_{n-1} + f_{n-2}$

There are f_n tilings of a $1 \times n$ board

Every tiling ends in either:

Fibonacci numbers f_n satisfy

- $\bullet \ f_0 = f_1 = 1 \qquad \checkmark$
- $\blacktriangleright f_n = f_{n-1} + f_{n-2}$

There are f_n tilings of a $1 \times n$ board

Every tiling ends in either:

Fibonacci numbers f_n satisfy

- $\bullet \ f_0 = f_1 = 1 \qquad \checkmark$
- $\blacktriangleright f_n = f_{n-1} + f_{n-2}$

There are f_n tilings of a $1 \times n$ board

Every tiling ends in either:

How many? Fill the initial $1 \times (n-1)$ board in f_{n-1} ways.

			\square

Fibonacci numbers f_n satisfy

- $\bullet \ f_0 = f_1 = 1 \qquad \checkmark$
- $\blacktriangleright f_n = f_{n-1} + f_{n-2}$

There are f_n tilings of a $1 \times n$ board

Every tiling ends in either:

How many? Fill the initial $1 \times (n-1)$ board in f_{n-1} ways.

► How many?

Fibonacci numbers f_n satisfy

- $\bullet \ f_0 = f_1 = 1 \qquad \checkmark$
- $\blacktriangleright f_n = f_{n-1} + f_{n-2}$

There are f_n tilings of a $1 \times n$ board

Every tiling ends in either:

How many? Fill the initial $1 \times (n-1)$ board in f_{n-1} ways.

▶ a domino

► How many? Fill the initial $1 \times (n-2)$ board in f_{n-2} ways. Total: $f_{n-1} + f_{n-2}$

Fibonacci numbers f_n satisfy

- $\bullet \ f_0 = f_1 = 1 \qquad \checkmark$
- $\bullet f_n = f_{n-1} + f_{n-2} \qquad \checkmark$

There are f_n tilings of a $1 \times n$ board

Every tiling ends in either:

How many? Fill the initial $1 \times (n-1)$ board in f_{n-1} ways.

▶ a domino

► How many? Fill the initial $1 \times (n-2)$ board in f_{n-2} ways. Total: $f_{n-1} + f_{n-2}$

We have a new definition for Fibonacci:

 f_n = the number of square-domino tilings of a 1 × n board.

We have a new definition for Fibonacci:

 f_n = the number of square-domino tilings of a 1 × n board.

This *combinatorial interpretation* of the Fibonacci numbers provides a framework to prove identities.

• Did you know that $f_{2n} = (f_n)^2 + (f_{n-1})^2$?

We have a new definition for Fibonacci:

 f_n = the number of square-domino tilings of a 1 × n board.

This *combinatorial interpretation* of the Fibonacci numbers provides a framework to prove identities.

• Did you know that $f_{2n} = (f_n)^2 + (f_{n-1})^2$?

 $f_1 \quad f_2 \quad f_3 \quad f_4 \quad f_5 \quad f_6 \quad f_7 \quad f_8 \quad f_9 \quad f_{10} \quad f_{11} \quad f_{12} \quad f_{13} \quad f_{14}$ $1 \quad 2 \quad \mathbf{3} \quad \mathbf{5} \quad 8 \quad 13 \quad 21 \quad \mathbf{34} \quad 55 \quad 89 \quad 144 \quad 233 \quad 377 \quad 610$ $f_8 = f_4^2 + f_3^2$

34 = 25 + 9

We have a new definition for Fibonacci:

 f_n = the number of square-domino tilings of a 1 × n board.

This *combinatorial interpretation* of the Fibonacci numbers provides a framework to prove identities.

• Did you know that $f_{2n} = (f_n)^2 + (f_{n-1})^2$?

 $f_{14} = f_7^2 + f_6^2$ 610 = 441 + 169

Proof. How many ways are there to tile a $1 \times (2n)$ board?

Proof. How many ways are there to tile a $1 \times (2n)$ board? Answer 1. Duh, f_{2n} .

Proof. How many ways are there to tile a $1 \times (2n)$ board? Answer 1. Duh, f_{2n} .

Answer 2. Ask whether there is a break in the middle of the tiling:

Either there is...

Or there isn't...

Proof. How many ways are there to tile a $1 \times (2n)$ board? Answer 1. Duh, f_{2n} .

Answer 2. Ask whether there is a break in the middle of the tiling:

Or there isn't...

Proof. How many ways are there to tile a $1 \times (2n)$ board? Answer 1. Duh, f_{2n} .

Answer 2. Ask whether there is a break in the middle of the tiling:

Proof. How many ways are there to tile a $1 \times (2n)$ board? Answer 1. Duh, f_{2n} .

Answer 2. Ask whether there is a break in the middle of the tiling:

Proof. How many ways are there to tile a $1 \times (2n)$ board? Answer 1. Duh, f_{2n} .

Answer 2. Ask whether there is a break in the middle of the tiling:

We counted f_{2n} in two different ways, so they must be equal.

Proof. How many ways are there to tile a $1 \times (2n)$ board? Answer 1. Duh, for.

Answer 2. Ask whether there is a break in the middle of the tiling:

For a total of $(f_n)^2 + (f_{n-1})^2$ tilings.

We counted f_{2n} in two different ways, so they must be equal.

Further reading:

👒 Arthur T. Benjamin and Jennifer J. Quinn Proofs that Really Count, MAA Press, 2003.