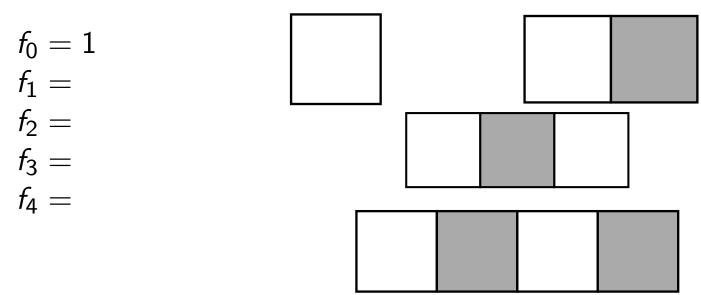
Tiling a board with dominos and squares

Question: How many ways are there to tile a $1 \times n$ board using only dominoes and squares?

Definition: Let $f_n = \#$ of ways to tile a $2 \times n$ board.



Why Fibonacci?

Fibonacci numbers f_n satisfy

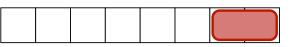
- $\blacktriangleright f_0 = f_1 = 1 \qquad \checkmark$
- $\bullet f_n = f_{n-1} + f_{n-2} \qquad \checkmark$

There are f_n tilings of a $1 \times n$ board

Every tiling ends in either:

How many? Fill the initial $1 \times (n-1)$ board in f_{n-1} ways.

► a domino



► How many? Fill the initial $1 \times (n-2)$ board in f_{n-2} ways. Total: $f_{n-1} + f_{n-2}$

Fibonacci identities

We have a new definition for Fibonacci:

 f_n = the number of square-domino tilings of a 1 × n board.

This *combinatorial interpretation* of the Fibonacci numbers provides a framework to prove identities.

• Did you know that $f_{2n} = (f_n)^2 + (f_{n-1})^2$?

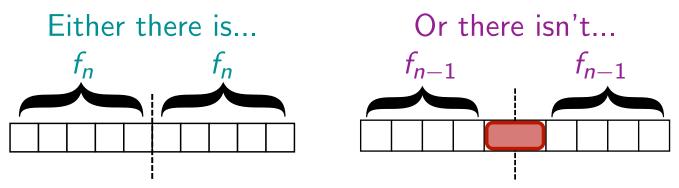
 $f_{14} = f_7^2 + f_6^2$ 610 = 441 + 169

Proof that $f_{2n} = (f_n)^2 + (f_{n-1})^2$

Proof. How many ways are there to tile a $1 \times (2n)$ board?

Answer 1. Duh, f_{2n}.

Answer 2. Ask whether there is a break in the middle of the tiling:



For a total of $(f_n)^2 + (f_{n-1})^2$ tilings.

We counted f_{2n} in two different ways, so they must be equal.

Further reading:

Arthur T. Benjamin and Jennifer J. Quinn Proofs that Really Count, MAA Press, 2003.