Multiplying two generating functions

Let
$$A(x) = \sum_{k \ge 0} a_k x^k$$
 and $B(x) = \sum_{k \ge 0} b_k x^k$.
What is the coefficient of x^k in $A(x)B(x)$?

When expanding the product A(x)B(x) we multiply terms $a_i x^i$ in A by terms $b_j x^j$ in B. This product contributes to the coefficient of x^k in AB only when _____.

Therefore,
$$A(x)B(x) = \sum_{k\geq 0} \left(\sum_{i=0}^{k} a_i b_{k-i}\right) x^k$$

An interpretation of this theorem:

If a_k counts all sets of size k of type "S", and b_k counts all sets of size k of type "T", then $[x^k](A(x)B(x))$ counts all pairs of sets (S, T) where the total number of elements in both sets is k.

Multiplying two generating functions

Example. What is the coefficient of
$$x^7$$
 in $\frac{x^3(1+x)^4}{(1-2x)}$?

A special case of the above:
$$(A(x))^2 = \sum_{k \ge 0} \bigg(\sum_{i_1+i_2=k} a_{i_1}a_{i_2} \bigg) x^k$$

Similar to above, the coefficient of x^k of $(A(x))^n$ is: $(A(x))^n = \sum_{k\geq 0} \left(\sum_{i_1+i_2+\dots+i_n=k} a_{i_1}a_{i_2}\cdots a_{i_n}\right) x^k$

Compositions of Generating Functions

Question: Let $F(x) = \sum_{n \ge 0} f_n x^n$ and $G(x) = \sum_{n \ge 0} g_n x^n$. What does H(x) = F(G(x)) represent combinatorially?

Investigate F(x) = 1/(1-x). $F(G(x)) = \frac{1}{1-G(x)} = 1 + G(x) + G(x)^2 + G(x)^3 + \cdots$.

- ► This is an infinite sum of (likely infinite) power series.
- ▶ The constant term h_0 of H(x) only makes sense if
- ► This implies that xⁿ divides G(x)ⁿ. Hence, there are at most n − 1 summands which contain x^{n−1}. We conclude that the infinite sum makes sense.

For a general composition with $g_0 = 0$,

$$F(G(x)) = \sum_{n \ge 0} f_n G(x)^n = f_0 + f_1 G(x) + f_2 G(x)^2 + f_3 G(x)^3 + \cdots$$

Compositions. of. Generating Functions.

Interpreting
$$\frac{1}{1-G(x)} = 1 + G(x) + G(x)^2 + G(x)^3 + \cdots$$
:

Recall: If G(x) represents the number of ways to build a certain structure on an *n*-element set, then $G(x)^k$ represents the number of ways to split the *n*-element set into an list of *k* pieces and build a structure on each piece.

Conclusion: As long as $g_0 = 0$, then $1 + G(x) + G(x)^2 + G(x)^3 + \cdots$ represents all ways to break down an *n*-element set into any number of (ordered) pieces and build a structure on each piece.

A partition: $p_1 + p_2 + \cdots + p_k = n$ with $p_1 \ge p_2 \ge \cdots \ge p_k$. A composition: $c_1 + c_2 + \cdots + c_k = n$ with no restrictions.

Think: A composition of generating functions equals a composition. of. generating. functions.

An Example, Compositions

Example. How many compositions of *n* are there?

Solution. We break down "n" into pieces of size k.

What is the "structure" on each piece?

For a piece of size k > 0, there is one option—it's a piece of size k.

Therefore
$$G(x) = x + x^2 + x^3 + x^4 + \cdots =$$

The generating function for compositions is $H(x) = \frac{1}{1-G(x)} =$

So the number of compositions of n is

A Composition Example

Example. How many ways are there to take a group of *n* soldiers, break them into non-empty platoons and assign each platoon a leader?

Solution. We break down the n soldiers set into groups of size k. What is the "structure" on each group? For a group of size k > 0, there are _____ options.

Therefore G(x) =

And the generating function for such a military breakdown is

$$H(x) = \frac{1}{1 - G(x)} = \frac{1 - 2x + x^2}{1 - 3x + x^2}$$