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Solving recurrence relations

Example. Determine a formula for the entries of the sequence {ak}k≥0

that satisfies a0 = 0 and the recurrence ak+1 = 2ak + 1 for k ≥ 0.

Solution. Use generating functions: define A(x) =
∑

k≥0 akx
k .

Step 1: Multiply both sides of the recurrence by xk+1 and sum
over all k: ∑

k≥0

ak+1x
k+1 =

∑
k≥0

(2ak + 1)xk+1

Step 2: Massage the sums to find copies of A(x).
LHS: Re-index, find missing term; RHS: separate into pieces.

∑
k≥1

akxk =
∑
k≥0

2akxk+1 +
∑
k≥0

xk+1

Conversion to functions of A(x):
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Step 3: Solve for the compact form of A(x).

A(x) =
x

(1 − 2x)(1 − x)

Step 4: Extract the coefficients.

When the degree of the numerator is smaller than the degree of the
denominator, we can use partial fractions to determine an expression
for A(x) of the form:

A(x) =
C1

1 − 2x
+

C2

1 − x

Solving gives A(x) = 1
1−2x + −1

1−x ; each of which can be expanded:



Solving Recurrence Relations — §3.5 97
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Step 3: Solve for the compact form of A(x).

A(x) =
x

(1 − 2x)(1 − x)

Step 4: Extract the coefficients.

When the degree of the numerator is smaller than the degree of the
denominator, we can use partial fractions to determine an expression
for A(x) of the form:

A(x) =
C1

1 − 2x
+

C2

1 − x

Solving gives A(x) = 1
1−2x + −1

1−x ; each of which can be expanded:

A(x) =
∑
k≥0

2kxk +
∑
k≥0

(−1) xk =
∑
k≥0

(2k − 1) xk

Therefore, ak = 2k − 1.
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initial conditions f0 = 0 and f1 = 1.
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initial conditions f0 = 0 and f1 = 1.
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∑
k≥0 fkxk . Then,
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A closed form for Fibonacci numbers

Example. Solve the recurrence relation fk+2 = fk+1 + fk with
initial conditions f0 = 0 and f1 = 1.
Solution. Define F (x) =

∑
k≥0 fkxk . Then,∑

k≥0

fk+2x
k+2 =

∑
k≥0

(fk+1 + fk)xk+2

∑
k≥0

fk+2x
k+2 =

∑
k≥0

fk+1x
k+2 +

∑
k≥0

fkxk+2

∑
k≥0

fk+2x
k+2 = x

∑
k≥0

fk+1x
k+1 + x2

∑
k≥0

fkxk

∑
k≥2

fkxk = x
∑
k≥1

fkxk + x2
∑
k≥0

fkxk
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A closed form for Fibonacci numbers

Example. Solve the recurrence relation fk+2 = fk+1 + fk with
initial conditions f0 = 0 and f1 = 1.
Solution. Define F (x) =

∑
k≥0 fkxk . Then,∑

k≥0

fk+2x
k+2 =

∑
k≥0

(fk+1 + fk)xk+2

∑
k≥0

fk+2x
k+2 =

∑
k≥0

fk+1x
k+2 +

∑
k≥0

fkxk+2

∑
k≥0

fk+2x
k+2 = x

∑
k≥0

fk+1x
k+1 + x2

∑
k≥0

fkxk

∑
k≥2

fkxk = x
∑
k≥1

fkxk + x2
∑
k≥0

fkxk

Therefore, F (x) − x − 0 = x
(
F (x) − 0

)
+ x2F (x), so

F (x) =
x

1 − x − x2
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A closed form for Fibonacci numbers

So the Fibonacci numbers have generating function x/(1− x − x2).
The roots of (1 − x − x2) = (1 − r+x)(1 − r−x) are r± = (1 ±√

5)/2.
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As k → +∞, the second term goes to zero, so fk ≈ 1√
5
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√
5

2
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So the Fibonacci numbers have generating function x/(1− x − x2).
The roots of (1 − x − x2) = (1 − r+x)(1 − r−x) are r± = (1 ±√

5)/2.
Using partial fractions,

F (x) =
1√
5

1

1 − r+x
− 1√

5

1

1 − r−x

Therefore,
∑
k≥0

fkxk =
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k≥0
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5

(
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5

2

)k

xk −
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1√
5

(
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5
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)k
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and we conclude that fk =
1√
5

(
1 +

√
5

2

)k

− 1√
5

(
1 −√

5

2

)k

.

As k → +∞, the second term goes to zero, so fk ≈ 1√
5

(
1 +

√
5

2

)k

Practicality: (1 +
√

5)/2 ≈ 1.61803 and 1 mi ≈ 1.609344 km
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Solving recurrence relations with repeated roots

With repeated roots in the denominator, the result is not quite as nice.

Example. Find the partial fraction decomposition of x
(1−2x)2(1+5x)

.

Since (1 − 2x)2 is a repeated root,

x

(1 − 2x)2(1 + 5x)
=

A

(1 − 2x)
+

B

(1 − 2x)2
+

C

(1 + 5x)
.
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Example. Find the partial fraction decomposition of x
(1−2x)2(1+5x)

.

Since (1 − 2x)2 is a repeated root,

x

(1 − 2x)2(1 + 5x)
=

A

(1 − 2x)
+

B

(1 − 2x)2
+

C

(1 + 5x)
.

Clearing the denominator gives:

x = A(1 − 2x)(1 + 5x) + B(1 + 5x) + C (1 − 2x)2.

When x = 1
2 , 1

2 = 0 + B(1 + 5
2) + 0; so B = 1

7 .
When x = −1

5 , −1
5 = 0 + 0 + C (1 + 2

5)2; so C = −5
49 .
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Equating the coefficients of x0, we see A + B + C = 0. We
conclude A = −2

49 .
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conclude A = −2
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x

(1 − 2x)2(1 + 5x)
=

− 2
49

(1 − 2x)
+

7
49

(1 − 2x)2
+

− 5
49

(1 + 5x)
.
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Solving recurrence relations with repeated roots

Example. Let {hn}n≥0 be a sequence satisfying

hn + hn−1 − 16hn−2 + 20hn−3 = 0,

with initial conditions h0 = 1, h1 = 1, and h2 = −1.
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Solving recurrence relations with repeated roots

Example. Let {hn}n≥0 be a sequence satisfying

hn + hn−1 − 16hn−2 + 20hn−3 = 0,

with initial conditions h0 = 1, h1 = 1, and h2 = −1.
Find the generating function and formula for hn.

h(x) = h0 + h1x + h2x
2 + h3x

3 + · · · + hnx
n + · · · ,

+xh(x) = h0x + h1x
2 + h2x

3 + · · · + hn−1x
n + · · · ,

−16x2h(x) = −16h0x2−16h1x3+· · ·−16hn−2x
n + · · · ,

+20x3h(x) = 20h0x3+· · ·+20hn−3x
n + · · · ,
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n + · · · ,

+20x3h(x) = 20h0x3+· · ·+20hn−3x
n + · · · ,

Therefore, h(x) =

Since (1 − y)−m =
∑

n≥0

(
m+n−1

n

)
yn,

Therefore 1
(1−2x)2

=
∑

n≥0

(n+1
n

)
(2x)n
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hn + hn−1 − 16hn−2 + 20hn−3 = 0,

with initial conditions h0 = 1, h1 = 1, and h2 = −1.
Find the generating function and formula for hn.

h(x) = h0 + h1x + h2x
2 + h3x

3 + · · · + hnx
n + · · · ,

+xh(x) = h0x + h1x
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n + · · · ,

+20x3h(x) = 20h0x3+· · ·+20hn−3x
n + · · · ,

Therefore, h(x) =

Since (1 − y)−m =
∑

n≥0

(
m+n−1

n

)
yn,

Therefore 1
(1−2x)2

=
∑

n≥0

(n+1
n

)
(2x)n =

∑
n≥0(n + 1)2nxn.

We conclude that hn =


