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2 1 1 5(/(,2) =2k-1_1.
3 1 3 1 S(k,k—1) = (%).
4 L7 6 1 Later: Formula for S(k, /).
5 1 15 25 10 1
6 1 31 90 65 15 1 To fill in the table, find
7 1 1 a recurrence for S(k, i):

Ask: In how many ways can we place k objects into i boxes?
We'll condition on the placement of element #i:



Counting set partitions — §2.3 59

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of Restrictions on # objects received
k objects | n boxes none | <1 [ >1 [ =1
distinct | distinct nk (n)« n! or 0
identical | distinct (}) (1) (,".) | 1oro0
distinct | identical
identical | identical

S(k, n) counts ways to place k distinct obj. into n identical boxes.
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THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of Restrictions on # objects received
k objects | n boxes none | <1 | >1 | =1
distinct | distinct nk (n)x |n'S(k,n)| n'or0
identical | distinct () (1) (,".) | 1oro
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S(k, n) counts ways to place k distinct obj. into n identical boxes.

What if we then label the boxes?

How many ways to distribute distinct objects into identical boxes
» If there is exactly one item in each box?
» If there is at most one item in each box?
» What about with no restrictions?
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Bell numbers

Definition: The Bell number By is the number of partitions of
a set with k elements, into any number of non-empty parts.

We have By = S(k,0) + S(k,1) + S(k,2) + - -- + S(k, k).
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Bell numbers

Definition: The Bell number By is the number of partitions of
a set with k elements, into any number of non-empty parts.

We have By = S(k,0) + S(k,1) + S(k,2) + - -- + S(k, k).
By B Bb B3 By Bs Bs By Bg By
1 1 2 5 15 52 203 877 4140 21147

Theorem 2.3.3. The Bell numbers satisfy a recurrence:
B = ("o")Bo+ ("1)But -+ (1) Beor.

Proof: How many partitions of {1,..., k} are there?
LHS: By, obviously.

RHS: Condition on the box containing the last element k:
How many partitions of [k] contain i elements in the box with k?
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