When placing *k* distinguishable objects into *n* indistinguishable boxes, what matters?

When placing *k* distinguishable objects into *n* indistinguishable boxes, what matters?

- ▶ Each object needs to be in some box.
- No object is in two boxes.

We have rediscovered

When placing *k* distinguishable objects into *n* indistinguishable boxes, what matters?

- ▶ Each object needs to be in some box.
- No object is in two boxes.

We have rediscovered

So ask "How many set partitions are there of a set with *k* objects?" Or even, "How many set partitions are there of *k* objects into *n* parts?"

When placing *k* distinguishable objects into *n* indistinguishable boxes, what matters?

- ▶ Each object needs to be in some box.
- No object is in two boxes.

We have rediscovered

So ask "How many set partitions are there of a set with k objects?" Or even, "How many set partitions are there of k objects into n parts?" In the homework, you will see ...

The answer is not straightforward.

When placing *k* distinguishable objects into *n* indistinguishable boxes, what matters?

- ▶ Each object needs to be in some box.
- No object is in two boxes.

We have rediscovered

So ask "How many set partitions are there of a set with k objects?" Or even, "How many set partitions are there of k objects into n parts?" In the homework, you will see ...

The answer is not straightforward.

The **Stirling number of the second kind** counts the number of ways to partition a set of k elements into i non-empty subsets. Notation: S(k, i) or ${k \atop i} \leftarrow$ **Careful about this order!**

The **Stirling number of the second kind** counts the number of ways to partition a set of k elements into i non-empty subsets. Notation: S(k, i) or ${k \atop i} \leftarrow$ **Careful about this order!**

k	${k \\ 0} {$	$\binom{k}{1}$	$\binom{k}{2}$	$\binom{k}{3}$	$\binom{k}{4}$	$\binom{k}{5}$	$\binom{k}{6}$	$\binom{k}{7}$
0	1							
1		1						
2		1	1					
3		1	3	1				
4		1	7	6	1			
5		1	15	25	10	1		
6		1	31	90	65	15	1	
7		1						1

The **Stirling number of the second kind** counts the number of ways to partition a set of k elements into i non-empty subsets.

Notation: S(k,i) or $\binom{k}{i}$. \leftarrow Careful about this order!

k	${k \\ 0} {$	$\binom{k}{1}$	$\binom{k}{2}$	$\binom{k}{3}$	$\binom{k}{4}$	$\binom{k}{5}$	$\binom{k}{6}$	$\binom{k}{7}$
0	1							
1		1						
2		1	1					
3		1	3	1				
4		1	7	6	1			
5		1	15	25	10	1		
6		1	31	90	65	15	1	
7		1						1

In Stirling's triangle:

$$S(k,1) = S(k,k) = 1.$$

$$S(k,2) = 2^{k-1} - 1.$$

$$S(k,k-1) = \binom{k}{2}.$$

Later: Formula for S(k, i).

The **Stirling number of the second kind** counts the number of ways to partition a set of k elements into i non-empty subsets.

Notation: S(k,i) or $\binom{k}{i}$. \leftarrow Careful about this order!

k	${k \\ 0} {k \\ 1}$	$\binom{k}{2}$	$\binom{k}{3}$	$\binom{k}{4}$	$\binom{k}{5}$	$\binom{k}{6}$	$\binom{k}{7}$
0	1						
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	
7	1						1

In Stirling's triangle:

$$\begin{split} S(k,1) &= S(k,k) = 1.\\ S(k,2) &= 2^{k-1} - 1.\\ S(k,k-1) &= \binom{k}{2}. \end{split}$$

Later: Formula for S(k, i).

To fill in the table, find a recurrence for S(k, i):

The **Stirling number of the second kind** counts the number of ways to partition a set of *k* elements into *i* non-empty subsets.

Notation: S(k,i) or $\binom{k}{i}$. \leftarrow Careful about this order!

k	${k \\ 0} {k \\ 1}$	$\binom{k}{2}$	$\binom{k}{3}$	$\binom{k}{4}$	$\binom{k}{5}$	$\binom{k}{6}$	$\binom{k}{7}$
0	1						
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	
7	1						1

In Stirling's triangle:

$$\begin{split} S(k,1) &= S(k,k) = 1.\\ S(k,2) &= 2^{k-1} - 1.\\ S(k,k-1) &= \binom{k}{2}. \end{split}$$

Later: Formula for S(k, i).

To fill in the table, find a recurrence for S(k, i):

Ask: In how many ways can we place k objects into i boxes? We'll condition on the placement of element #i:

Question: In how many ways can we place k objects in n boxes?

Distribut	ions of	Restrictions on $\#$ objects received				
k objects	n boxes	none	≤ 1	≥ 1	=1	
distinct	distinct	n ^k	$(n)_{k}$		<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical					
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes.

Question: In how many ways can we place k objects in n boxes?

Distribut	ions of	Restrictions on $\#$ objects received			
k objects	n boxes	none	≤ 1	≥ 1	=1
distinct	distinct	n ^k	$(n)_{k}$		<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical			S(k, n)	
identical	identical				

S(k, n) counts ways to place k distinct obj. into n identical boxes.

Question: In how many ways can we place k objects in n boxes?

Distribut	ions of	Restrictions on $\#$ objects received			
k objects	n boxes	none	≤ 1	≥ 1	=1
distinct	distinct	n ^k	$(n)_{k}$		<i>n</i> ! or 0
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0
distinct	identical			S(k, n)	
identical	identical				

S(k, n) counts ways to place k distinct obj. into n identical boxes. What if we then label the boxes?

Question: In how many ways can we place k objects in n boxes?

Distribut	tions of	Restrictions on $\#$ objects received				
k objects	n boxes	none	≤ 1	≥ 1	= 1	
distinct	distinct	n ^k	$(n)_{k}$	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical			S(k, n)		
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes. What if we then label the boxes?

Question: In how many ways can we place k objects in n boxes?

Distribut	tions of	Restrictions on $\#$ objects received				
k objects	n boxes	none	≤ 1	≥ 1	= 1	
distinct	distinct	n ^k	$(n)_{k}$	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical			S(k, n)		
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes. What if we then label the boxes?

How many ways to distribute distinct objects into identical boxes

▶ If there is exactly one item in each box?

Question: In how many ways can we place k objects in n boxes?

Distribut	ions of	Restrictions on $\#$ objects received				
k objects	n boxes	none	≤ 1	≥ 1	= 1	
distinct	distinct	n ^k	$(n)_{k}$	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical			S(k, n)	1 or 0	
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes. What if we then label the boxes?

How many ways to distribute distinct objects into identical boxes

- ▶ If there is exactly one item in each box?
- ▶ If there is at most one item in each box?

Question: In how many ways can we place k objects in n boxes?

Distribut	ions of	Restrictions on $\#$ objects received				
k objects	n boxes	none	≤ 1	≥ 1	= 1	
distinct	distinct	n ^k	$(n)_{k}$	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical		1 or 0	S(k, n)	1 or 0	
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes. What if we then label the boxes?

How many ways to distribute distinct objects into identical boxes

- ▶ If there is exactly one item in each box?
- ▶ If there is at most one item in each box?
- What about with no restrictions?

Question: In how many ways can we place k objects in n boxes?

Distribut	tions of	Restrictions on $\#$ objects received				
k objects	n boxes	none	≤ 1	≥ 1	=1	
distinct	distinct	n ^k	$(n)_{k}$	n!S(k,n)	<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical	$\sum S(k,i)$	1 or 0	S(k, n)	1 or 0	
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes. What if we then label the boxes?

How many ways to distribute distinct objects into identical boxes

- ▶ If there is exactly one item in each box?
- ▶ If there is at most one item in each box?
- ▶ What about with no restrictions?

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have $B_k = S(k,0) + S(k,1) + S(k,2) + \cdots + S(k,k)$.

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have
$$B_k = S(k, 0) + S(k, 1) + S(k, 2) + \cdots + S(k, k)$$
.

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have
$$B_k = S(k, 0) + S(k, 1) + S(k, 2) + \cdots + S(k, k)$$
.

Theorem 2.3.3. The Bell numbers satisfy a recurrence:

 $B_{k} = \binom{k-1}{0}B_{0} + \binom{k-1}{1}B_{1} + \cdots + \binom{k-1}{k-1}B_{k-1}.$

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have
$$B_k = S(k, 0) + S(k, 1) + S(k, 2) + \cdots + S(k, k)$$
.

Theorem 2.3.3. The Bell numbers satisfy a recurrence:

 $B_{k} = \binom{k-1}{0}B_{0} + \binom{k-1}{1}B_{1} + \cdots + \binom{k-1}{k-1}B_{k-1}.$

Proof: How many partitions of $\{1, ..., k\}$ are there? LHS: B_k , obviously. RHS:

Definition: The **Bell number** B_k is the number of partitions of a set with k elements, into any number of non-empty parts.

We have
$$B_k = S(k, 0) + S(k, 1) + S(k, 2) + \cdots + S(k, k)$$
.

Theorem 2.3.3. The Bell numbers satisfy a recurrence:

 $B_{k} = \binom{k-1}{0}B_{0} + \binom{k-1}{1}B_{1} + \cdots + \binom{k-1}{k-1}B_{k-1}.$

Proof: How many partitions of $\{1, \ldots, k\}$ are there? LHS: B_k , obviously.

RHS: Condition on the box containing the last element k: How many partitions of [k] contain i elements in the box with k?