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Stirling numbers

The Stirling number of the second kind counts the number of
ways to partition a set of k elements into i non-empty subsets.

Notation: S(k, i) or
{

k

i

}

. ← Careful about this order!
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S(k, 1) = S(k, k) = 1.

S(k, 2) = 2k−1 − 1.

S(k, k−1) =
(
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Later: Formula for S(k, i).
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Ask: In how many ways can we place k objects into i boxes?
We’ll condition on the placement of element #i :
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THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of Restrictions on # objects received

k objects n boxes none ≤ 1 ≥ 1 = 1

distinct distinct nk (n)k n! or 0

identical distinct
((

n

k

)) (

n
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) ((

n

k−n

))

1 or 0

distinct identical

identical identical

S(k, n) counts ways to place k distinct obj. into n identical boxes.
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a set with k elements, into any number of non-empty parts.
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LHS: Bk , obviously.
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