Distinct objects in indistinguishable boxes

When placing k distinguishable objects into n indistinguishable boxes, what matters?

- Each object needs to be in some box.
- No object is in two boxes.

We have rediscovered \qquad .

So ask "How many set partitions are there of a set with k objects?" Or even, "How many set partitions are there of k objects into n parts?" In the homework, you will see ...

The answer is not straightforward.

Stirling numbers

The Stirling number of the second kind counts the number of ways to partition a set of k elements into i non-empty subsets. Notation: $S(k, i)$ or $\left\{\begin{array}{l}k \\ i\end{array}\right\} . \leftarrow$ Careful about this order!

k	\{ $\begin{aligned} & k \\ & 0\end{aligned}$	$\left\{\begin{array}{l}k \\ 1\end{array}\right\}$		$\left\{\begin{array}{l}k \\ 2\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 3\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 4\end{array}\right\}$	$\left\{\begin{array}{l}k \\ 5\end{array}\right\}$	\{ ${ }^{\text {k }}$	
0	12								
1		1							
2		1		1					
3		1		3	1				
4		1		7	6	1			
5		1		15	25	10	1		
6		1		31	90	65	15	1	
7		1							1

In Stirling's triangle:

$$
\begin{aligned}
& S(k, 1)=S(k, k)=1 . \\
& S(k, 2)=2^{k-1}-1 . \\
& S(k, k-1)=\binom{k}{2} .
\end{aligned}
$$

Later: Formula for $S(k, i)$.
To fill in the table, find a recurrence for $S(k, i)$:

Ask: In how many ways can we place k objects into i boxes?
We'll condition on the placement of element $\# i$:

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distributions of		Restrictions on \# objects received			
k objects	n boxes	none	≤ 1	≥ 1	$=1$
distinct	distinct	n^{k}	$(n)_{k}$		$n!$ or 0
identical	distinct	$\left.\binom{n}{k}\right)$	$\binom{n}{k}$	$\left.\binom{n}{k-n}\right)$	1 or 0
distinct	identical				
identical	identical				

$S(k, n)$ counts ways to place k distinct obj. into n identical boxes.
What if we then label the boxes?
How many ways to distribute distinct objects into identical boxes

- If there is exactly one item in each box?
- If there is at most one item in each box?
- What about with no restrictions?

Bell numbers

Definition: The Bell number B_{k} is the number of partitions of a set with k elements, into any number of non-empty parts.

We have $B_{k}=S(k, 0)+S(k, 1)+S(k, 2)+\cdots+S(k, k)$.

B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}	B_{9}
1	1	2	5	15	52	203	877	4140	21147

Theorem 2.3.3. The Bell numbers satisfy a recurrence:

$$
B_{k}=\binom{k-1}{0} B_{0}+\binom{k-1}{1} B_{1}+\cdots+\binom{k-1}{k-1} B_{k-1} .
$$

Proof: How many partitions of $\{1, \ldots, k\}$ are there?
LHS: B_{k}, obviously.
RHS: Condition on the box containing the last element k :
How many partitions of $[k]$ contain i elements in the box with k ?

