Distinct objects in indistinguishable boxes

When placing k distinguishable objects into n indistinguishable boxes, what matters? _____

- ► Each object needs to be in some box.
- No object is in two boxes.

We have rediscovered

So ask "How many set partitions are there of a set with k objects?" Or even, "How many set partitions are there of k objects into n parts?" In the homework, you will see ...

The answer is not straightforward.

Stirling numbers

The **Stirling number of the second kind** counts the number of ways to partition a set of k elements into i non-empty subsets.

Notation: S(k, i) or ${k \atop i}$. \leftarrow Careful about this order!

k	$\left\{ \begin{smallmatrix} k \\ 0 \end{smallmatrix} \right\} \left\{ \begin{smallmatrix} k \\ 1 \end{smallmatrix} \right\}$	$\binom{k}{2}$	${k \\ 3}$	${k \\ A}$	$\binom{k}{5}$	${k \\ 6}$	$\left\{ \begin{array}{c} k \\ 7 \end{array} \right\}$
0	1						
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	
7	1						1

In Stirling's triangle:

S(k, 1) = S(k, k) = 1. $S(k, 2) = 2^{k-1} - 1.$ $S(k, k-1) = {k \choose 2}.$

Later: Formula for S(k, i).

To fill in the table, find a recurrence for S(k, i):

Ask: In how many ways can we place k objects into i boxes? We'll condition on the placement of element #i:

THE CHART

Question: In how many ways can we place k objects in n boxes?

Distribut	tions of	Restrictions on $\#$ objects received				
k objects	n boxes	none	≤ 1	≥ 1	=1	
distinct	distinct	n ^k	$(n)_k$		<i>n</i> ! or 0	
identical	distinct	$\binom{n}{k}$	$\binom{n}{k}$	$\binom{n}{k-n}$	1 or 0	
distinct	identical					
identical	identical					

S(k, n) counts ways to place k distinct obj. into n identical boxes. What if we then label the boxes?

How many ways to distribute distinct objects into identical boxes

- ▶ If there is exactly one item in each box?
- ▶ If there is at most one item in each box?
- What about with no restrictions?

Bell numbers

Definition: The Bell number B_k is the number of partitions of a set with k elements, into any number of non-empty parts. We have $B_k = S(k,0) + S(k,1) + S(k,2) + \cdots + S(k,k)$. $B_0 \quad B_1 \quad B_2 \quad B_3 \quad B_4 \quad B_5 \quad B_6 \quad B_7 \quad B_8 \quad B_9$

Theorem 2.3.3. The Bell numbers satisfy a recurrence: $B_{k} = \binom{k-1}{0}B_{0} + \binom{k-1}{1}B_{1} + \dots + \binom{k-1}{k-1}B_{k-1}.$

Proof: How many partitions of $\{1, \ldots, k\}$ are there? LHS: B_k , obviously.

RHS: Condition on the box containing the last element k: How many partitions of [k] contain i elements in the box with k?