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Many combinatorial objects have a natural symmetry.

Example. In how many ways can we seat 4 people at a round table?
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� In how many ways can we arrange 10 people into five pairs?

� In how many ways can we k-color the vertices of a square?
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Introduction to Symmetry

Many combinatorial objects have a natural symmetry.

Example. In how many ways can we seat 4 people at a round table?

There are 4! permutations; however, each of rotations gives
the same order of guests. Dividing gives the arrangements.

� In how many ways can we arrange 10 people into five pairs?

� In how many ways can we k-color the vertices of a square?

In order to approach counting questions involving symmetry
rigorously, we use the mathematical notion of equivalence relation.
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Equivalence relations

Definition: An equivalence relation E on a set A satisfies the
following properties:

� Reflexive: For all a ∈ A, aEa.

� Symmetric: For all a, b ∈ A, if aEb, then bEa.

� Transitive: For all a, b, c ∈ A, if aEb, and bEc , then aEc .
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� Symmetric: For all a, b ∈ A, if aEb, then bEa.

� Transitive: For all a, b, c ∈ A, if aEb, and bEc , then aEc .

Example. When sitting four people at a round table, let A be all
4-permutations. We say a = (a1, a2, a3, a4) and b = (b1, b2, b3, b4)
are “equivalent” (aEb) if they are rotations of each other.

Verify that E is an equivalence relation.
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Equivalence classes

It is natural to investigate the set of all elements related to a:

Definition: The equivalence class containing a is the set

E(a) = {x ∈ A : xEa}.
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It is natural to investigate the set of all elements related to a:

Definition: The equivalence class containing a is the set

E(a) = {x ∈ A : xEa}.

Class 1: { (1,2,3,4) , (2,3,4,1) , (3,4,1,2) , (4,1,2,3) }
Class 2: { (1,2,4,3) , (2,4,3,1) , (4,3,1,2) , (3,1,2,4) }
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Class 5: { (1,4,2,3) , (4,2,3,1) , (2,3,1,4) , (3,1,4,2) }
Class 6: { (1,4,3,2) , (4,3,2,1) , (3,2,1,4) , (2,1,4,3) }
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� Our original question asks to count equivalence classes (!).
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It is natural to investigate the set of all elements related to a:

Definition: The equivalence class containing a is the set

E(a) = {x ∈ A : xEa}.

Class 1: { (1,2,3,4) , (2,3,4,1) , (3,4,1,2) , (4,1,2,3) }
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Class 6: { (1,4,3,2) , (4,3,2,1) , (3,2,1,4) , (2,1,4,3) }

� Our original question asks to count equivalence classes (!).

� Theorem 1.4.3. If aEb, then E(a) = E(b).

� Every element of A is in one and only one equivalence class.
� We say: “The equivalence classes of E partition A.”
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Equivalence classes partition A

Definition: A partition of a set S is a set of non-empty disjoint
subsets of S whose union is S .

Example. Partitions of S = {∗,♥,♣, ?} include:

�
{{∗,♥}, {?}, {♣}}

�
{{♥,♣}, {∗, ?}}

Every element is in some subset and no element is in multiple subsets.
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� Every element of A is in one and only one equivalence class.
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Equivalence classes partition A

Definition: A partition of a set S is a set of non-empty disjoint
subsets of S whose union is S .

Example. Partitions of S = {∗,♥,♣, ?} include:

�
{{∗,♥}, {?}, {♣}}

�
{{♥,♣}, {∗, ?}}

Every element is in some subset and no element is in multiple subsets.

Key idea: (Thm 1.4.5) The set of equivalence classes of A partitions A.

� Every equivalence class is non-empty.

� Every element of A is in one and only one equivalence class.

The equivalence principle: (p. 37) Let E be an equivalence
relation on a finite set A. If every equivalence class has size C ,
then E has |A|/C equivalence classes. (DIVISION!)
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The Equivalence Principle

Example. In how many ways can we arrange 10 people into five pairs?
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The Equivalence Principle

Example. In how many ways can we arrange 10 people into five pairs?

Setup: Let A be the set of 10-lists, (a1, a2, . . . , a9, a10) = a ∈ A.

This represents the pairings
{{a1, a2}, . . . , {a9, a10}

}
.
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Setup: Let A be the set of 10-lists, (a1, a2, . . . , a9, a10) = a ∈ A.

This represents the pairings
{{a1, a2}, . . . , {a9, a10}

}
.

Define two lists a and b to be equivalent if they give the same pairings.

[For example, (3, 2, 9, 10, 1, 5, 8, 7, 4, 6) ≡ (2, 3, 9, 10, 1, 5, 6, 4, 8, 7).]

(Why is this an equivalence relation?)
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The Equivalence Principle

Example. In how many ways can we arrange 10 people into five pairs?

Setup: Let A be the set of 10-lists, (a1, a2, . . . , a9, a10) = a ∈ A.

This represents the pairings
{{a1, a2}, . . . , {a9, a10}

}
.

Define two lists a and b to be equivalent if they give the same pairings.

[For example, (3, 2, 9, 10, 1, 5, 8, 7, 4, 6) ≡ (2, 3, 9, 10, 1, 5, 6, 4, 8, 7).]

(Why is this an equivalence relation?)

We ask: How many different 10-lists are in the same equivalence class?

Answer:

By the equivalence principle,
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Permutations of multisets

Example. How many different orderings are there of the letters in
the word MISSISSIPPI?

Setup: If the letters were all distinguishable, we would have a
permutation of 11 letters, {M,P ,P , I , I , I , I ,S ,S ,S ,S}.
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Define aEb if a and b are the same word when color is ignored.
(Is this an equivalence relation?)
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Question: How many words are in the same equivalence class?

Alternatively, count directly.

� In how many ways can you position the S ’s?
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Permutations of multisets

Example. How many different orderings are there of the letters in
the word MISSISSIPPI?

Setup: If the letters were all distinguishable, we would have a
permutation of 11 letters, {M,P ,P , I , I , I , I ,S ,S ,S ,S}.
Define aEb if a and b are the same word when color is ignored.
(Is this an equivalence relation?)

Question: How many words are in the same equivalence class?

Alternatively, count directly.

� In how many ways can you position the S ’s?

� With S ’s placed, how many choices for the I ’s?

� With S ’s, I ’s placed, how many choices for the P ’s?

� With S ’s, I ’s, P ’s placed, how many choices for the M?
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Careful: Conjugacy classes might not be of equal size.
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Example. Let A be the subsets of [4]. Define SET when
|S | = |T |. Determine the number of conjugacy classes of E .
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Careful: Conjugacy classes might not be of equal size.

Example. Let A be the subsets of [4]. Define SET when
|S | = |T |. Determine the number of conjugacy classes of E .

Solution. (not) We know that E({1}) =
{{1}, {2}, {3}, {4}}, of

size 4. Since |A| = 24, there are 24
4 = 6 conjugacy classes.
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Blah Blah Blah

Careful: Conjugacy classes might not be of equal size.

Example. Let A be the subsets of [4]. Define SET when
|S | = |T |. Determine the number of conjugacy classes of E .

Solution. (not) We know that E({1}) =
{{1}, {2}, {3}, {4}}, of

size 4. Since |A| = 24, there are 24
4 = 6 conjugacy classes.

Solution. The conjugacy classes correspond to .


