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The sum principle

Often it makes sense to break down your counting problem into
smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

Answer: Condition on how many digits.

» Length 1: » Length 4:
> Length 2: » Length 5,6:
» Length 3: » Total:

% Every palindrome between 1 and 999999 is counted once.

This illustrates the sum principle:

Suppose the objects to be counted can be broken into k disjoint
and exhaustive cases. If there are n; objects in case j, then there
are ny + ny + - - - + ng objects in all.
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Counting pitfalls

When counting, there are two common pitfalls:
» Undercounting

» Often, forgetting cases when applying the sum principle.
» Ask: Did | miss something?

» Overcounting

» Often, misapplying the product principle.
» Ask: Do cases need to be counted in different ways?
» Ask: Does the same object appear in multiple ways?

Common example: A deck of cards.
There are four suits: Diamond <>, Heart ¢, Club &, Spade #.
Each has 13 cards: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2.

Example. Suppose you are dealt two diamonds between 2 and 10.
In how many ways can the product be even?
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In how many ways can the face-down card be an Ace and the
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Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down.
In how many ways can the face-down card be an Ace and the
face-up card be a Heart ©7?

Answer: There are __ aces, so there are ___ choices for the down card.
There are __ hearts, so there are choices for the up card.
By the product principle, there are 52 ways in all.

Except:

Remember to ask: Do cases need to be counted in different ways?
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Remember to ask: Does the same object appear in multiple ways?
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Q1: How many 4-lists taken from [9] have at least one pair
of adjacent elements equal?
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Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair
of adjacent elements equal?

—Compare this to—
Q2: How many 4-lists taken from [9] have no pairs

of adjacent elements equal?

What can we say about:
Q1: Q2: Together:

Q3:

Strategy: It is sometimes easier to count the complement.

Answer to Q3:
Answer to Q2:
Answer to Q1:
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that you are dealt a full house?

[Three cards of one type and two cards of another type] 555 K K
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Example. When playing five-card poker, what is the probability
that you are dealt a full house?

[Three cards of one type and two cards of another type] 555 K K

Game plan:
» Count the total number of hands.

» Count the number of possible full houses. # of ways

» Choose the denomination of the three-of-a-kind.
» Choose which three suits they are in.
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Poker hands

Example. When playing five-card poker, what is the probability
that you are dealt a full house?

[Three cards of one type and two cards of another type] 555 K K

Game plan:
» Count the total number of hands.

» Count the number of possible full houses. # of ways

» Choose the denomination of the three-of-a-kind.
» Choose which three suits they are in.

» Choose the denomination of the pair.

» Choose which two suits they are in.

» Apply the multiplication principle. Total:

» Divide to find the probability.

3744 0
2598960 0.14%
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Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are
of the same size is by way of a bijection.

A bijection is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of {s1, s, s3} are in bijection with
the set B of binary words of length 3.

Set A: { 0, {si}.{s2}.{s1,%2}.{s3}.{s1.53}. {2, 53} {51, %, 53} }
Bjectio: | 1 1 1 1 1 1 1
Set B: {000,100, 010, 110, 001, 101, 011, 111 }

Rule: Given a € A, (ais a subset), define b € B (b is a word):
If s; € a, then letter i in bis 1. If 5; ¢ a, then letter i in b is 0.

Difficulties:
» Finding the function or rule (requires rearranging, ordering)
» Proving the function or rule (show it IS a bijection).
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where for each element a € A, f(a) is defined as an element b € B
(write f : a+ b).
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What is a Function?

Reminder: A function f from A to B (write f : A — B) is a rule
where for each element a € A, f(a) is defined as an element b € B
(write f : a+ b).
» A is called the domain. (We write A = dom(f))
» B is called the codomain. (We write B = cod(f))
» The range of f is the set of values that f takes on:
rng(f) = {b € B : f(a) = b for at least one a € A}

Example. Let A be the set of 3-subsets of [n] and let B be the set
of 3-lists of [n]. Then define f : A — B to be the function that takes
a 3-subset {i1, ir, i3} € A (with i1 < i < i3) to the word i1iai3 € B.

Question: s rng(f) = B?
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What is a Bijection?

Definition: A function f : A — B is one-to-one (an injection) when
For each aj,a; € A, if f(a1) = f(a2), then a3 = ay.
Equivalently,
For each aj,ar € A, if a1 # ap, then f(a1) # f(a2).
“When the inputs are different, the outputs are different.”
Definition: A function f : A — B is onto (a surjection) when
For each b € B, there exists some a € A such that f(a) = b.
“Every output gets hit.”

Definition: A function f : A — B is a bijection if it is both
one-to-one and onto.

The function from the previous page is

What is an example of a function that is onto and not one-to-one?



Bijections — §1.3 34

Proving a Bijection

Example. Use a bijection to prove that (]) = (,”,) for 0 < k < n.



Bijections — §1.3 34

Proving a Bijection

Example. Use a bijection to prove that (]) = (,”,) for 0 < k < n.

Proof. Let A be the set of k-subsets of [n]
and let B be the set of (n — k)-subsets of [n].

A bijection between A and B will prove (Z) =|Al=|B| = (,,_k)-



Bijections — §1.3 34

Proving a Bijection

Example. Use a bijection to prove that (]) = (,”,) for 0 < k < n.

Proof. Let A be the set of k-subsets of [n]
and let B be the set of (n — k)-subsets of [n].

A bijection between A and B will prove (}) = [A| = |B| = (,,",).
Step 1: Find a candidate bijection.
Strategy. Try out a small (enough) example. Try n =15 and k = 2.

(1,2}, {1,3} {1,2,3}, {1,2,4}
(1,4}, {1,5} {1,2,5}, {1,3,4}
(2,3}, {2,4} % { {1,3,5}, {1,4,5}
{2,5}, {3,4} {2,3,4}, {2,3,5}

{3,5}, {4,5} {2,4,5}, {3,4,5}
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Proving a Bijection

Example. Use a bijection to prove that (]) = (,”,) for 0 < k < n.

Proof. Let A be the set of k-subsets of [n]
and let B be the set of (n — k)-subsets of [n].

A bijection between A and B will prove (}) = [A| = |B| = (,,",).
Step 1: Find a candidate bijection.
Strategy. Try out a small (enough) example. Try n =15 and k = 2.

{1,2}, {1,3} {1,2,3}, {1,2,4}
{1,4}, {1,5} {1,2,5}, {1,3,4}
{2,3}, {2,4} 3 << {1,3,5}, {1,4,5}
{2,5}, {3,4} {2,3,4}, {2,3,5}
{3,5}, {4,5} {2,4,5}, {3,4,5}

Guess: Let S be a k-subset of [n]. Perhaps f(S) =
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Step 2: Prove f is well defined.

The function f is well defined. If S is any k-subset of [n], then 5S¢
is a subset of [n] with n — k members. Therefore f : A — B.
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The function f is well defined. If S is any k-subset of [n], then 5S¢
is a subset of [n] with n — k members. Therefore f : A — B.
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Proving a Bijection

Step 2: Prove f is well defined.

The function f is well defined. If S is any k-subset of [n], then 5S¢
is a subset of [n] with n — k members. Therefore f : A — B.

Step 3: Prove f is a bijection.
Strategy. Prove that f is both one-to-one and onto.

f is 1-to-1: Suppose that S; and S; are two k-subsets of [n] such
that f(S1) = f(S2). Thatis, S§f = S5. This means that for all i € [n],
then i ¢ Sy if and only if i ¢ S,. Therefore S; = S, and f is 1-to-1.

f is onto: Suppose that T € B is an (n — k)-subset of [n].
We must find a set S € A satisfying f(S) = T. Choose S =
Then S € A (why?), and f(S) = 5= T, so f is onto.

We conclude that f is a bijection and therefore, (Z) = (nﬁk)'
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Using the Inverse Function

When f : A — B is 1-to-1, we can define f's inverse.
We write f~1, and it is a function from rng(f) to A.
It is defined via f. If f : a+ b, then f~1: b+ a.
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Using the Inverse Function

When f : A — B is 1-to-1, we can define f's inverse.
We write f~1, and it is a function from rng(f) to A.
It is defined via f. If f : a+ b, then f~1: b+ a.

Caution: When f is a function from A to B, f~! might not be a
function from B to A.

Theorem. Suppose that A and B are finite sets and that f : A — B

is a function. If =1 is a function with domain B, then f is a bijection.
Proof. Since f~! is only defined when f is 1-to-1, we need only

prove that f is onto. Suppose b € B. By assumption, f~1(b) € A
exists and f(f~1(b)) = b. So f is onto, and is a bijection.
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Caution: When f is a function from A to B, f~! might not be a
function from B to A.

Theorem. Suppose that A and B are finite sets and that f : A — B

is a function. If =1 is a function with domain B, then f is a bijection.
Proof. Since f~! is only defined when f is 1-to-1, we need only

prove that f is onto. Suppose b € B. By assumption, f~1(b) € A
exists and f(f~1(b)) = b. So f is onto, and is a bijection.

Consequence: An alternative method for proving a bijection is:
» Find a rule g : B — A which always takes f(a) back to a.
» Verify that the domain of g is all of B.
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Using the Inverse Function

Example. There exists as many even-sized subsets of [n] as
odd-sized subsets of [n].
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Example. There exists as many even-sized subsets of [n] as
odd-sized subsets of [n].

even: { 0, {s1,%}.{s1,s3}, {s2,s3} }
odd: {{si}, {2}, {ss}, {s1,%,s3}}
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Using the Inverse Function

Example. There exists as many even-sized subsets of [n] as
odd-sized subsets of [n].
even: { 0, {s1,}{s1,s3}, {s2,:3} }
odd: {{Sl}, {52}, {53}, {51,52,53}}

Proof. Let A be the set of even-sized subsets of [n] and let B be
the set of odd-sized subsets of [n]. Consider the function

oy |S—{1) if1es
(5)= Su{1} if1¢s|’

» f:A— Bis a well defined function from A to B (why?).
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Using the Inverse Function

Example. There exists as many even-sized subsets of [n] as
odd-sized subsets of [n].

even: { 0, {s1,%}.{s1,s3}, {s2,s3} }
odd: {{si}, {2}, {ss}, {s1,%,s3}}

Proof. Let A be the set of even-sized subsets of [n] and let B be
the set of odd-sized subsets of [n]. Consider the function

S—{1} if1esS
f(s)= (> frest
SuU{1} iif1¢s
» f:A— Bis a well defined function from A to B (why?).
» 1 exists and equals f (why?)
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Using the Inverse Function

Example. There exists as many even-sized subsets of [n] as
odd-sized subsets of [n].

even: { 0, {s1,%}.{s1,s3}, {s2,s3} }
odd: {{si}, {2}, {ss}, {s1,%,s3}}

Proof. Let A be the set of even-sized subsets of [n] and let B be
the set of odd-sized subsets of [n]. Consider the function

S—{1} if1eS
f(s)= ¢ W ifrest
SuU{1} iif1¢s
» f:A— Bis a well defined function from A to B (why?).
» f~! exists and equals f (why?) and has domain B (why?).
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Using the Inverse Function

Example. There exists as many even-sized subsets of [n] as
odd-sized subsets of [n].

even: { 0, {s1,%}.{s1,s3}, {s2,s3} }
odd: {{si}, {2}, {ss}, {s1,%,s3}}

Proof. Let A be the set of even-sized subsets of [n] and let B be
the set of odd-sized subsets of [n]. Consider the function

(5) = {5—{1} ifleS}.
SuU{1} iif1¢s
» f:A— Bis a well defined function from A to B (why?).
» f~! exists and equals f (why?) and has domain B (why?).
Therefore, f is a bijection, proving the statement, as desired.



Bijections — §1.3 37

Using the Inverse Function

Example. There exists as many even-sized subsets of [n] as
odd-sized subsets of [n].

even: { 0, {s1,%}.{s1,s3}, {s2,s3} }
odd: {{si}, {2}, {ss}, {s1,%,s3}}

Proof. Let A be the set of even-sized subsets of [n] and let B be
the set of odd-sized subsets of [n]. Consider the function

(5) = {5—{1} ifleS}.
SuU{1} iif1¢s
» f:A— Bis a well defined function from A to B (why?).
» f~! exists and equals f (why?) and has domain B (why?).
Therefore, f is a bijection, proving the statement, as desired.

Consequence: Z(—l)k(Z) =0.
k=0



	Overcounting --- §1.2
	Bijections --- §1.3

