Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

Answer: Condition on how many digits.

- ► Length 1:
- ► Length 2:
- ► Length 3:

- ► Length 4:
- ▶ Length 5,6:
- Total:

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes? *Answer:* Condition on how many digits.

- Length 1:
 Length 2:
 Length 3:
 Total:
- \star Every palindrome between 1 and 9999999 is counted once.

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes? *Answer:* Condition on how many digits.

Length 1:	► Length 4:
Length 2:	► Length 5,6:
Length 3:	► Total:

 \star Every palindrome between 1 and 9999999 is counted once.

This illustrates the sum principle:

Suppose the objects to be counted can be broken into k disjoint and exhaustive cases. If there are n_j objects in case j, then there are $n_1 + n_2 + \cdots + n_k$ objects in all.

When counting, there are two common pitfalls:

When counting, there are two common pitfalls:

► Undercounting

When counting, there are two common pitfalls:

Undercounting

When counting, there are two common pitfalls:

- Undercounting
 - ▶ Often, forgetting cases when applying the sum principle.
 - ► Ask: Did I miss something?
- Overcounting

When counting, there are two common pitfalls:

- Undercounting
 - ▶ Often, forgetting cases when applying the sum principle.
 - Ask: Did I miss something?
- Overcounting
 - ▶ Often, misapplying the product principle.
 - Ask: Do cases need to be counted in different ways?
 - Ask: Does the same object appear in multiple ways?

When counting, there are two common pitfalls:

- Undercounting
 - ▶ Often, forgetting cases when applying the sum principle.
 - Ask: Did I miss something?
- Overcounting
 - ▶ Often, misapplying the product principle.
 - ▶ Ask: Do cases need to be counted in different ways?
 - ► Ask: Does the same object appear in multiple ways?

Common example: A deck of cards.

There are four suits: Diamond ♦, Heart ♥, Club ♣, Spade ♠. Each has 13 cards: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2.

When counting, there are two common pitfalls:

- Undercounting
 - ▶ Often, forgetting cases when applying the sum principle.
 - Ask: Did I miss something?
- Overcounting
 - ▶ Often, misapplying the product principle.
 - ▶ Ask: Do cases need to be counted in different ways?
 - ► Ask: Does the same object appear in multiple ways?

Common example: A deck of cards.

There are four suits: Diamond ♦, Heart ♥, Club ♣, Spade ♠. Each has 13 cards: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2.

Example. Suppose you are dealt two diamonds between 2 and 10. In how many ways can the product be even?

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart \heartsuit ?

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart \heartsuit ?

Answer: There are ____ aces, so there are ____ choices for the down card.

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart \heartsuit ?

Answer: There are ____ aces, so there are ____ choices for the down card. There are ____ hearts, so there are ____ choices for the up card.

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart \heartsuit ?

Answer: There are ____ aces, so there are ____ choices for the down card. There are ____ hearts, so there are ____ choices for the up card. By the product principle, there are 52 ways in all.

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart \heartsuit ?

Answer: There are ____ aces, so there are ____ choices for the down card. There are ____ hearts, so there are ____ choices for the up card. By the product principle, there are 52 ways in all.

Except:

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart \heartsuit ?

Answer: There are ____ aces, so there are ____ choices for the down card. There are ____ hearts, so there are ____ choices for the up card. By the product principle, there are 52 ways in all.

Except:

Remember to ask: Do cases need to be counted in different ways?

Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

Examples: 1114, 1229, 5555 Non-examples: 1231, 9898.

Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

Examples: 1114, 1229, 5555 Non-examples: 1231, 9898.

Strategy:

- 1. Choose where the adjacent equal elements are.
- 2. Choose which number they are.
- 3. Choose the numbers for the remaining elements.

Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

Examples: 1114, 1229, 5555 Non-examples: 1231, 9898.

Strategy:

- 1. Choose where the adjacent equal elements are. (_____
- 2. Choose which number they are.
- 3. Choose the numbers for the remaining elements. (

By the product principle, there are _____ ways in all.

ways)

ways)

ways)

Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

Examples: 1114, 1229, 5555 Non-examples: 1231, 9898.

Strategy:

- 1. Choose where the adjacent equal elements are. (_____
- 2. Choose which number they are.
- 3. Choose the numbers for the remaining elements.

By the product principle, there are _____ ways in all.

Except:

ways)

ways)

ways)

Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

Examples: 1114, 1229, 5555 Non-examples: 1231, 9898.

Strategy:

- 1. Choose where the adjacent equal elements are. (_____
- 2. Choose which number they are.
- 3. Choose the numbers for the remaining elements. (_____ ways)

By the product principle, there are _____ ways in all.

Except:

Remember to ask: Does the same object appear in multiple ways?

ways) ways)

Q1: How many 4-lists taken from [9] have **at least one** pair of adjacent elements equal?

-Compare this to-

Q2: How many 4-lists taken from [9] have **no** pairs of adjacent elements equal?

What can we say about: Q1: Q2:

Q1: How many 4-lists taken from [9] have **at least one** pair of adjacent elements equal?

-Compare this to-

Together:

Q2: How many 4-lists taken from [9] have **no** pairs of adjacent elements equal?

What can we say about:

Q1: Q2:

Q3:

Q1: How many 4-lists taken from [9] have **at least one** pair of adjacent elements equal?

-Compare this to-

Q2: How many 4-lists taken from [9] have **no** pairs of adjacent elements equal?

What can we say about:

Q1: Q2: Together:

Q3:

Strategy: It is sometimes easier to **count the complement**. Answer to Q3:

Q1: How many 4-lists taken from [9] have **at least one** pair of adjacent elements equal?

-Compare this to-

Q2: How many 4-lists taken from [9] have **no** pairs of adjacent elements equal?

What can we say about:

Q1: Q2: Together:

Q3:

Strategy: It is sometimes easier to count the complement.

Answer to Q3: Answer to Q2:

Q1: How many 4-lists taken from [9] have **at least one** pair of adjacent elements equal?

-Compare this to-

Q2: How many 4-lists taken from [9] have **no** pairs of adjacent elements equal?

What can we say about:

Q1: Q2: Together:

Q3:

Strategy: It is sometimes easier to count the complement.

Answer to Q3: Answer to Q2: Answer to Q1:

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- ► Count the total number of hands.
- ► Count the number of possible full houses.

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- ► Count the total number of hands.
- Count the number of possible full houses.
 - Choose the denomination of the three-of-a-kind.
 - Choose which three suits they are in.

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

► Count the total number of hands.

Count the number of possible full houses.

- Choose the denomination of the three-of-a-kind.
- Choose which three suits they are in.
- Choose the denomination of the pair.
- Choose which two suits they are in.
- Apply the multiplication principle.
- ▶ Divide to find the probability.

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

► Count the total number of hands.

- Count the number of possible full houses. # of ways
 - Choose the denomination of the three-of-a-kind.
 - Choose which three suits they are in.
 - Choose the denomination of the pair.
 - Choose which two suits they are in.
 - Apply the multiplication principle. **Total:**
- ▶ Divide to find the probability.

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

► Count the total number of hands.

- Count the number of possible full houses. # of ways
 - Choose the denomination of the three-of-a-kind.
 - Choose which three suits they are in.
 - Choose the denomination of the pair.
 - Choose which two suits they are in.
 - Apply the multiplication principle. **Total:**
- ▶ Divide to find the probability. $\frac{3744}{2598960} \approx 0.14\%$

Key tool: A useful method of proving that two sets *A* and *B* are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Key tool: A useful method of proving that two sets *A* and *B* are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

Set A: $\{ \emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}, \{s_3\}, \{s_1, s_3\}, \{s_2, s_3\}, \{s_1, s_2, s_3\} \}$

Set B: {000, 100, 010, 110, 001, 101, 011, 111 }

Key tool: A useful method of proving that two sets *A* and *B* are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

Key tool: A useful method of proving that two sets *A* and *B* are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

Rule: Given $a \in A$, (a is a subset), define $b \in B$ (b is a word): If $s_i \in a$, then letter i in b is 1. If $s_i \notin a$, then letter i in b is 0.

Key tool: A useful method of proving that two sets *A* and *B* are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

Rule: Given $a \in A$, (a is a subset), define $b \in B$ (b is a word): If $s_i \in a$, then letter i in b is 1. If $s_i \notin a$, then letter i in b is 0.

Difficulties:

Finding the function or rule (requires rearranging, ordering)

Proving the function or rule (show it **IS** a bijection).

Reminder: A **function** f from A to B (write $f : A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined as an element $b \in B$ (write $f : a \mapsto b$).

Reminder: A **function** f from A to B (write $f : A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined as an element $b \in B$ (write $f : a \mapsto b$).

- A is called the **domain**. (We write A = dom(f))
- ▶ *B* is called the **codomain**. (We write B = cod(f))

Reminder: A **function** f from A to B (write $f : A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined as an element $b \in B$ (write $f : a \mapsto b$).

- A is called the **domain**. (We write A = dom(f))
- ▶ *B* is called the **codomain**. (We write B = cod(f))
- ► The **range** of *f* is the set of values that *f* takes on:

$$\mathsf{rng}(f) = ig\{ b \in B : f(a) = b ext{ for at least one } a \in A ig\}$$

Reminder: A **function** f from A to B (write $f : A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined as an element $b \in B$ (write $f : a \mapsto b$).

- A is called the **domain**. (We write A = dom(f))
- ▶ *B* is called the **codomain**. (We write B = cod(f))
- ► The **range** of *f* is the set of values that *f* takes on:

$$\mathsf{rng}(f) = ig\{ b \in B : f(a) = b ext{ for at least one } a \in A ig\}$$

Example. Let A be the set of 3-subsets of [n] and let B be the set of 3-lists of [n]. Then define $f : A \to B$ to be the function that takes a 3-subset $\{i_1, i_2, i_3\} \in A$ (with $i_1 \le i_2 \le i_3$) to the word $i_1i_2i_3 \in B$. *Question:* Is rng(f) = B?

Definition: A function $f : A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Definition: A function $f : A \rightarrow B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$. Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

Definition: A function $f : A \rightarrow B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$. Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$. "When the inputs are different, the outputs are different." (picture)

Definition: A function $f : A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$. Equivalently, For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$. "When the inputs are different, the outputs are different." (picture)

Definition: A function $f : A \to B$ is **onto** (a **surjection**) when For each $b \in B$, there exists some $a \in A$ such that f(a) = b. "Every output gets hit."

Definition: A function $f : A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$. Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$. "When the inputs are different, the outputs are different." (picture)

Definition: A function $f : A \to B$ is onto (a surjection) when For each $b \in B$, there exists some $a \in A$ such that f(a) = b. "Every output gets hit."

Definition: A function $f : A \rightarrow B$ is a **bijection** if it is both one-to-one and onto.

Definition: A function $f : A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$. Equivalently, For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

"When the inputs are different, the outputs are different." (picture)

Definition: A function $f : A \rightarrow B$ is **onto** (a **surjection**) when For each $b \in B$, there exists some $a \in A$ such that f(a) = b. "Every output gets hit."

Definition: A function $f : A \rightarrow B$ is a **bijection** if it is both one-to-one and onto.

The function from the previous page is _

Definition: A function $f : A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$. Equivalently, For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$. "When the inputs are different, the outputs are different." (picture)

Definition: A function $f : A \to B$ is **onto** (a **surjection**) when For each $b \in B$, there exists some $a \in A$ such that f(a) = b. "Every output gets hit."

Definition: A function $f : A \rightarrow B$ is a **bijection** if it is both one-to-one and onto.

The function from the previous page is _____. What is an example of a function that is onto and not one-to-one?

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proof. Let A be the set of k-subsets of [n] and let B be the set of (n - k)-subsets of [n].

A bijection between A and B will prove $\binom{n}{k} = |A| = |B| = \binom{n}{n-k}$.

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proof. Let A be the set of k-subsets of [n] and let B be the set of (n - k)-subsets of [n].

A bijection between A and B will prove $\binom{n}{k} = |A| = |B| = \binom{n}{n-k}$.

Step 1: Find a candidate bijection.

Strategy. Try out a small (enough) example. Try n = 5 and k = 2.

$$\left\{ \begin{array}{c} \{1,2\}, \{1,3\} \\ \{1,4\}, \{1,5\} \\ \{2,3\}, \{2,4\} \\ \{2,5\}, \{3,4\} \\ \{3,5\}, \{4,5\} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} \{1,2,3\}, \{1,2,4\} \\ \{1,2,5\}, \{1,3,4\} \\ \{1,3,5\}, \{1,4,5\} \\ \{2,3,4\}, \{2,3,5\} \\ \{2,4,5\}, \{3,4,5\} \end{array} \right\}$$

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proof. Let A be the set of k-subsets of [n] and let B be the set of (n - k)-subsets of [n].

A bijection between A and B will prove $\binom{n}{k} = |A| = |B| = \binom{n}{n-k}$.

Step 1: Find a candidate bijection.

Strategy. Try out a small (enough) example. Try n = 5 and k = 2.

$$\left\{ \begin{array}{c} \{1,2\}, \ \{1,3\} \\ \{1,4\}, \ \{1,5\} \\ \{2,3\}, \ \{2,4\} \\ \{2,5\}, \ \{3,4\} \\ \{3,5\}, \ \{4,5\} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} \{1,2,3\}, \ \{1,2,4\} \\ \{1,2,5\}, \ \{1,3,4\} \\ \{1,3,5\}, \ \{1,4,5\} \\ \{2,3,4\}, \ \{2,3,5\} \\ \{2,4,5\}, \ \{3,4,5\} \end{array} \right\}$$

Guess: Let S be a k-subset of [n]. Perhaps f(S) =

Step 2: Prove *f* **is well defined.**

The function f is well defined. If S is any k-subset of [n], then S^c is a subset of [n] with n - k members. Therefore $f : A \rightarrow B$.

Step 2: Prove *f* **is well defined.**

The function f is well defined. If S is any k-subset of [n], then S^c is a subset of [n] with n - k members. Therefore $f : A \rightarrow B$.

Step 3: Prove *f* **is a bijection.**

Strategy. Prove that f is both one-to-one and onto.

Step 2: Prove *f* **is well defined.**

The function f is well defined. If S is any k-subset of [n], then S^c is a subset of [n] with n - k members. Therefore $f : A \rightarrow B$.

Step 3: Prove *f* **is a bijection.**

Strategy. Prove that f is both one-to-one and onto.

f is 1-to-1: Suppose that S_1 and S_2 are two *k*-subsets of [n] such that $f(S_1) = f(S_2)$. That is, $S_1^c = S_2^c$. This means that for all $i \in [n]$, then $i \notin S_1$ if and only if $i \notin S_2$. Therefore $S_1 = S_2$ and *f* is 1-to-1.

Step 2: Prove *f* **is well defined.**

The function f is well defined. If S is any k-subset of [n], then S^c is a subset of [n] with n - k members. Therefore $f : A \rightarrow B$.

Step 3: Prove *f* **is a bijection.**

Strategy. Prove that f is both one-to-one and onto.

f is 1-to-1: Suppose that S_1 and S_2 are two k-subsets of [n] such that $f(S_1) = f(S_2)$. That is, $S_1^c = S_2^c$. This means that for all $i \in [n]$, then $i \notin S_1$ if and only if $i \notin S_2$. Therefore $S_1 = S_2$ and f is 1-to-1.

f is onto: Suppose that $T \in B$ is an (n - k)-subset of [n]. We must find a set $S \in A$ satisfying f(S) = T. Choose S =_____ Then $S \in A$ (why?), and $f(S) = S^c = T$, so *f* is onto.

We conclude that f is a bijection and therefore, $\binom{n}{k} = \binom{n}{n-k}$.

When $f : A \to B$ is 1-to-1, we can define f's **inverse**. We write f^{-1} , and it is a function from rng(f) to A. It is defined via f. If $f : a \mapsto b$, then $f^{-1} : b \mapsto a$.

When $f : A \to B$ is 1-to-1, we can define f's **inverse**. We write f^{-1} , and it is a function from rng(f) to A. It is defined via f. If $f : a \mapsto b$, then $f^{-1} : b \mapsto a$. **Caution:** When f is a function from A to B, f^{-1} might not be a function from B to A. 36

When $f : A \to B$ is 1-to-1, we can define f's **inverse**. We write f^{-1} , and it is a function from rng(f) to A. It is defined via f. If $f : a \mapsto b$, then $f^{-1} : b \mapsto a$.

Caution: When f is a function from A to B, f^{-1} might not be a function from B to A.

Theorem. Suppose that A and B are finite sets and that $f : A \rightarrow B$ is a function. If f^{-1} is a function with domain B, then f is a bijection.

When $f : A \rightarrow B$ is 1-to-1, we can define f's **inverse**.

We write f^{-1} , and it is a function from rng(f) to A.

It is defined via f. If $f : a \mapsto b$, then $f^{-1} : b \mapsto a$.

Caution: When f is a function from A to B, f^{-1} might not be a function from B to A.

Theorem. Suppose that A and B are finite sets and that $f : A \to B$ is a function. If f^{-1} is a function with domain B, then f is a bijection. *Proof.* Since f^{-1} is only defined when f is 1-to-1, we need only prove that f is onto. Suppose $b \in B$. By assumption, $f^{-1}(b) \in A$ exists and $f(f^{-1}(b)) = b$. So f is onto, and is a bijection.

When $f : A \rightarrow B$ is 1-to-1, we can define f's **inverse**.

We write f^{-1} , and it is a function from rng(f) to A.

It is defined via f. If $f : a \mapsto b$, then $f^{-1} : b \mapsto a$.

Caution: When f is a function from A to B, f^{-1} might not be a function from B to A.

Theorem. Suppose that A and B are finite sets and that $f : A \to B$ is a function. If f^{-1} is a function with domain B, then f is a bijection. *Proof.* Since f^{-1} is only defined when f is 1-to-1, we need only prove that f is onto. Suppose $b \in B$. By assumption, $f^{-1}(b) \in A$ exists and $f(f^{-1}(b)) = b$. So f is onto, and is a bijection.

Consequence: An alternative method for proving a bijection is:

- Find a rule $g : B \to A$ which always takes f(a) back to a.
- ▶ Verify that the domain of g is all of B.

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even: {
$$\emptyset$$
, { s_1 , s_2 }, { s_1 , s_3 }, { s_2 , s_3 } }
odd: {{ s_1 }, { s_2 }, { s_3 }, { s_1 , s_2 , s_3 }

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even: {
$$\emptyset$$
, { s_1 , s_2 }, { s_1 , s_3 }, { s_2 , s_3 } }
odd: {{ s_1 }, { s_2 }, { s_3 }, { s_1 , s_2 , s_3 }

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = egin{cases} S-\{1\} & ext{if } 1\in S \ S\cup\{1\} & ext{if } 1
otin S \end{pmatrix}$$

▶ $f : A \rightarrow B$ is a well defined function from A to B (why?).

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even: {
$$\emptyset$$
, { s_1 , s_2 }, { s_1 , s_3 }, { s_2 , s_3 } }
odd: {{ s_1 }, { s_2 }, { s_3 }, { s_1 , s_2 , s_3 }

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = egin{cases} S-\{1\} & ext{if } 1\in S \ S\cup\{1\} & ext{if } 1
otin S \end{pmatrix}$$

f : *A* → *B* is a well defined function from *A* to *B* (why?).
 f⁻¹ exists and equals *f* (why?)

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even: {
$$\emptyset$$
, { s_1 , s_2 }, { s_1 , s_3 }, { s_2 , s_3 } }
odd: {{ s_1 }, { s_2 }, { s_3 }, { s_1 , s_2 , s_3 }

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = egin{cases} S-\{1\} & ext{if } 1\in S \ S\cup\{1\} & ext{if } 1
otin S \end{pmatrix}$$

f : *A* → *B* is a well defined function from *A* to *B* (why?).
 f⁻¹ exists and equals *f* (why?) and has domain *B* (why?).

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even: {
$$\emptyset$$
, { s_1 , s_2 }, { s_1 , s_3 }, { s_2 , s_3 } }
odd: {{ s_1 }, { s_2 }, { s_3 }, { s_1 , s_2 , s_3 }

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = egin{cases} S-\{1\} & ext{if } 1\in S \ S\cup\{1\} & ext{if } 1
otin S \end{pmatrix}$$

f: A → B is a well defined function from A to B (why?).
 f⁻¹ exists and equals f (why?) and has domain B (why?).
 Therefore, f is a bijection, proving the statement, as desired.

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even: {
$$\emptyset$$
, { s_1 , s_2 }, { s_1 , s_3 }, { s_2 , s_3 } }
odd: {{ s_1 }, { s_2 }, { s_3 }, { s_1 , s_2 , s_3 }

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = egin{cases} S-\{1\} & ext{if } 1\in S \ S\cup\{1\} & ext{if } 1
otin S \end{pmatrix}$$

▶ $f: A \to B$ is a well defined function from A to B (why?). ▶ f^{-1} exists and equals f (why?) and has domain B (why?). Therefore, f is a bijection, proving the statement, as desired. Consequence: $\sum_{k=0}^{n} (-1)^k {n \choose k} = 0.$