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The sum principle

Often it makes sense to break down your counting problem into
smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

Answer: Condition on how many digits.

◮ Length 1: ◮ Length 4:

◮ Length 2: ◮ Length 5,6:

◮ Length 3: ◮ Total:

⋆ Every palindrome between 1 and 999999 is counted once.

This illustrates the sum principle:

Suppose the objects to be counted can be broken into k disjoint
and exhaustive cases. If there are nj objects in case j , then there
are n1 + n2 + · · · + nk objects in all.
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Counting pitfalls

When counting, there are two common pitfalls:

◮ Undercounting

◮ Often, forgetting cases when applying the sum principle.
◮ Ask: Did I miss something?

◮ Overcounting

◮ Often, misapplying the product principle.
◮ Ask: Do cases need to be counted in different ways?
◮ Ask: Does the same object appear in multiple ways?

Common example: A deck of cards.

There are four suits: Diamond ♦, Heart ♥, Club ♣, Spade ♠.
Each has 13 cards: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2.

Example. Suppose you are dealt two diamonds between 2 and 10.
In how many ways can the product be even?
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Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down.
In how many ways can the face-down card be an Ace and the
face-up card be a Heart ♥?

Answer: There are aces, so there are choices for the down card.
There are hearts, so there are choices for the up card.
By the product principle, there are 52 ways in all.

Except:

Remember to ask: Do cases need to be counted in different ways?
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Q1: How many 4-lists taken from [9] have at least one pair
of adjacent elements equal?

—Compare this to—

Q2: How many 4-lists taken from [9] have no pairs
of adjacent elements equal?

What can we say about:
Q1: Q2: Together:

Q3:

Strategy: It is sometimes easier to count the complement.

Answer to Q3:
Answer to Q2:
Answer to Q1:
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that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K
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◮ Choose the denomination of the three-of-a-kind.
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Poker hands

Example. When playing five-card poker, what is the probability
that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

◮ Count the total number of hands.

◮ Count the number of possible full houses. # of ways

◮ Choose the denomination of the three-of-a-kind.
◮ Choose which three suits they are in.
◮ Choose the denomination of the pair.
◮ Choose which two suits they are in.
◮ Apply the multiplication principle. Total:

◮ Divide to find the probability.
3744

2598960
≈ 0.14%
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Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are
of the same size is by way of a bijection.

A bijection is a function or rule that pairs up elements of A and B .

Example. The set A of subsets of {s1, s2, s3} are in bijection with
the set B of binary words of length 3.

Set A:
{

∅, {s1},{s2},{s1, s2},{s3},{s1, s3},{s2, s3},{s1, s2, s3}
}

Bijection: l l l l l l l l
Set B:

{

000, 100, 010, 110, 001, 101, 011, 111
}

Rule: Given a ∈ A, (a is a subset), define b ∈ B (b is a word):
If si ∈ a, then letter i in b is 1. If si /∈ a, then letter i in b is 0.

Difficulties:

◮ Finding the function or rule (requires rearranging, ordering)
◮ Proving the function or rule (show it IS a bijection).
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Reminder: A function f from A to B (write f : A → B) is a rule
where for each element a ∈ A, f (a) is defined as an element b ∈ B

(write f : a 7→ b).

◮ A is called the domain. (We write A = dom(f ))

◮ B is called the codomain. (We write B = cod(f ))

◮ The range of f is the set of values that f takes on:

rng(f ) =
{

b ∈ B : f (a) = b for at least one a ∈ A
}

Example. Let A be the set of 3-subsets of [n] and let B be the set
of 3-lists of [n]. Then define f : A → B to be the function that takes
a 3-subset {i1, i2, i3} ∈ A (with i1 ≤ i2 ≤ i3) to the word i1i2i3 ∈ B .

Question: Is rng(f ) = B?
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What is a Bijection?

Definition: A function f : A → B is one-to-one (an injection) when

For each a1, a2 ∈ A, if f (a1) = f (a2), then a1 = a2.

Equivalently,

For each a1, a2 ∈ A, if a1 6= a2, then f (a1) 6= f (a2).

“When the inputs are different, the outputs are different.” (picture)

Definition: A function f : A → B is onto (a surjection) when

For each b ∈ B , there exists some a ∈ A such that f (a) = b.

“Every output gets hit.”

Definition: A function f : A → B is a bijection if it is both
one-to-one and onto.

The function from the previous page is .

What is an example of a function that is onto and not one-to-one?
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Example. Use a bijection to prove that
(

n
k

)

=
(

n
n−k

)

for 0 ≤ k ≤ n.

Proof. Let A be the set of k-subsets of [n]
and let B be the set of (n − k)-subsets of [n].

A bijection between A and B will prove
(

n
k

)

= |A| = |B | =
(

n
n−k

)

.

Step 1: Find a candidate bijection.

Strategy. Try out a small (enough) example. Try n = 5 and k = 2.























{1, 2}, {1, 3}
{1, 4}, {1, 5}
{2, 3}, {2, 4}
{2, 5}, {3, 4}
{3, 5}, {4, 5}























↔























{1, 2, 3}, {1, 2, 4}
{1, 2, 5}, {1, 3, 4}
{1, 3, 5}, {1, 4, 5}
{2, 3, 4}, {2, 3, 5}
{2, 4, 5}, {3, 4, 5}
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{1, 2, 3}, {1, 2, 4}
{1, 2, 5}, {1, 3, 4}
{1, 3, 5}, {1, 4, 5}
{2, 3, 4}, {2, 3, 5}
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Guess: Let S be a k-subset of [n]. Perhaps f (S) = .
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Proving a Bijection

Step 2: Prove f is well defined.

The function f is well defined. If S is any k-subset of [n], then Sc

is a subset of [n] with n − k members. Therefore f : A → B .

Step 3: Prove f is a bijection.

Strategy. Prove that f is both one-to-one and onto.

f is 1-to-1: Suppose that S1 and S2 are two k-subsets of [n] such
that f (S1) = f (S2). That is, Sc

1 = Sc
2 . This means that for all i ∈ [n],

then i /∈ S1 if and only if i /∈ S2. Therefore S1 = S2 and f is 1-to-1.

f is onto: Suppose that T ∈ B is an (n − k)-subset of [n].
We must find a set S ∈ A satisfying f (S) = T . Choose S = .
Then S ∈ A (why?), and f (S) = Sc = T , so f is onto.

We conclude that f is a bijection and therefore,
(

n
k

)

=
(

n
n−k

)

.
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Using the Inverse Function

When f : A → B is 1-to-1, we can define f ’s inverse.
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It is defined via f . If f : a 7→ b, then f −1 : b 7→ a.
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Using the Inverse Function

When f : A → B is 1-to-1, we can define f ’s inverse.

We write f −1, and it is a function from rng(f ) to A.

It is defined via f . If f : a 7→ b, then f −1 : b 7→ a.

Caution: When f is a function from A to B , f −1 might not be a
function from B to A.

Theorem. Suppose that A and B are finite sets and that f : A → B

is a function. If f −1 is a function with domain B , then f is a bijection.

Proof. Since f −1 is only defined when f is 1-to-1, we need only
prove that f is onto. Suppose b ∈ B . By assumption, f −1(b) ∈ A

exists and f (f −1(b)) = b. So f is onto, and is a bijection.

Consequence: An alternative method for proving a bijection is:

◮ Find a rule g : B → A which always takes f (a) back to a.

◮ Verify that the domain of g is all of B .
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.

◮ f : A → B is a well defined function from A to B (why?).
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Example. There exists as many even-sized subsets of [n] as
odd-sized subsets of [n].

even:
{

∅, {s1, s2},{s1, s3}, {s2, s3}
}

odd:
{

{s1}, {s2}, {s3}, {s1, s2, s3}
}

Proof. Let A be the set of even-sized subsets of [n] and let B be
the set of odd-sized subsets of [n]. Consider the function

f (S) =

{

S − {1} if 1 ∈ S

S ∪ {1} if 1 /∈ S

}

.

◮ f : A → B is a well defined function from A to B (why?).

◮ f −1 exists and equals f (why?) and has domain B (why?).

Therefore, f is a bijection, proving the statement, as desired.

Consequence:

n
∑

k=0

(−1)k
(

n
k

)

= 0.
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