Course Notes

Combinatorics, Fall 2011

Queens College, Math 636

Prof. Christopher Hanusa

On the web: http://people.qc.cuny.edu/faculty
/ christopher.hanusa/courses/636fa11/
The following are books that I recommend to complement this course. I have asked that they be placed *on reserve* in the library.

Benjamin and Quinn. *Proofs that really count.*
Bóna. *A walk through combinatorics.*
Brualdi. *Introductory combinatorics.*
Graham, Knuth, and Patashnik. *Concrete mathematics.*
Mazur. *Combinatorics: A guided tour*
van Lint and Wilson. *A course in combinatorics.*
What is combinatorics?

In this class: Learn how to count ...
What is combinatorics?

In this class: Learn how to count ... better.
What is combinatorics?

In this class: Learn how to count ... better.

Question: How many domino tilings are there of an 8×8 chessboard?
What is combinatorics?

In this class: Learn how to count ... better.

Question: How many domino tilings are there of an 8×8 chessboard?
What is combinatorics?

In this class: Learn how to count ... better.

Question: How many domino tilings are there of an 8×8 chessboard?

How many people think there are more than:

10?
What is combinatorics?

In this class: Learn how to count ... better.

Question: How many domino tilings are there of an 8×8 chessboard?

How many people think there are more than:

100?
What is combinatorics?

In this class: Learn how to count ... better.

Question: How many domino tilings are there of an 8×8 chessboard?

How many people think there are more than:

1,000?
What is combinatorics?

In this class: Learn how to count \ldots better.

Question: How many domino tilings are there of an 8×8 chessboard?

How many people think there are more than:

10,000?
What is combinatorics?

In this class: Learn how to count ... better.

Question: How many domino tilings are there of an 8×8 chessboard?

![Domino tilings examples]

How many people think there are more than:

100,000?
What is combinatorics?

In this class: Learn how to count ... better.

Question: How many domino tilings are there of an 8×8 chessboard?

How many people think there are more than:

$1,000,000$?
What is combinatorics?

In this class: Learn how to count . . . better.

Question: How many domino tilings are there of an 8×8 chessboard?

How many people think there are more than:

$10,000,000$?
What is combinatorics?

In this class: Learn how to count ... better.

Question: How many domino tilings are there of an 8×8 chessboard?

How many people think there are more than:

100,000,000?
What is combinatorics?

In this class: Learn how to count ... better.

Question: How many domino tilings are there of an 8×8 chessboard?

How many people think there are more than:

$1,000,000,000$?
What is combinatorics?

In this class: Learn how to count ... better.

Question: How many domino tilings are there of an 8×8 chessboard?

The TRUE number is:
What is combinatorics?

In this class: Learn how to count ... better.

Question: How many domino tilings are there of an 8×8 chessboard?

The TRUE number is:

$$12,988,816.$$
What is combinatorics?

In this class: Learn how to count ... better.

Question: How many domino tilings are there of an 8×8 chessboard?

The TRUE number is:

$$12,988,816.$$

We have the answer!
What is combinatorics?

In this class: Learn how to count ... better.

Question: How many domino tilings are there of an 8×8 chessboard?

The TRUE number is:

12,988,816.

We have the answer! What does it mean?
How to determine the “answer”?
- Convert the chessboard into a combinatorial structure (a graph).
- Represent the graph numerically as a matrix.
- Take the determinant of this matrix.
Domino tilings

How to determine the “answer”?

- Convert the chessboard into a combinatorial structure (a graph).
- Represent the graph numerically as a matrix.
- Take the determinant of this matrix.

Question: How many domino tilings are there of an $m \times n$ board?
Domino tilings

How to determine the “answer”?
▶ Convert the chessboard into a combinatorial structure (a graph).
▶ Represent the graph numerically as a matrix.
▶ Take the determinant of this matrix.
▶ Use the structure of the matrices to determine their eigenvalues.

Question: How many domino tilings are there of an $m \times n$ board?
Domino tilings

How to determine the “answer”?

▶ Convert the chessboard into a combinatorial structure (a graph).
▶ Represent the graph numerically as a matrix.
▶ Take the determinant of this matrix.
▶ Use the structure of the matrices to determine their eigenvalues.

Question: How many domino tilings are there of an $m \times n$ board?

Answer: If m and n are both even, then we have the formula (!):

$$
\prod_{j=1}^{m/2} \prod_{k=1}^{n/2} \left(4 \cos^2 \frac{\pi j}{m+1} + 4 \cos^2 \frac{\pi k}{n+1} \right).
$$
Domino tilings

How to determine the “answer”?

- Convert the chessboard into a combinatorial structure (a graph).
- Represent the graph numerically as a matrix.
- Take the determinant of this matrix.
- Use the structure of the matrices to determine their eigenvalues.

Question: How many domino tilings are there of an $m \times n$ board?

Answer: If m and n are both even, then we have the formula (!):

$$
\prod_{j=1}^{m/2} \prod_{k=1}^{n/2} \left(4 \cos^2 \frac{j \pi}{m+1} + 4 \cos^2 \frac{k \pi}{n+1} \right).
$$

Learn how to count . . . better.
Combinatorial questions

Given some discrete objects, what properties and structures do they have?

- Can we count the arrangements?
- Can we enumerate the arrangements?
Combinatorial questions

Given some discrete objects, what properties and structures do they have?

- Can we count the arrangements?
 - Count means give a number.
- Can we enumerate the arrangements?
Combinatorial questions

Given some discrete objects, what properties and structures do they have?

- Can we count the arrangements?
 - **Count** means give a *number*.
- Can we enumerate the arrangements?
 - **Enumerate** means give a *description* or *list*.
Combinatorial questions

Given some discrete objects, what properties and structures do they have?

- Can we count the arrangements?
 - **Count** means give a *number*.

- Can we enumerate the arrangements?
 - **Enumerate** means give a *description* or *list*.

- Do any arrangements have a certain property?

- Can we construct arrangements having some property?
Combinatorial questions

Given some discrete objects, what properties and structures do they have?

- Can we count the arrangements?
 - **Count** means give a *number*.

- Can we enumerate the arrangements?
 - **Enumerate** means give a *description* or *list*.

- Do any arrangements have a certain property?
 - This is an **existence** question.

- Can we construct arrangements having some property?
Combinatorial questions

Given some discrete objects, what properties and structures do they have?

► Can we count the arrangements?
 ► **Count** means give a *number*.

► Can we enumerate the arrangements?
 ► **Enumerate** means give a *description* or *list*.

► Do any arrangements have a certain property?
 ► This is an **existence** question.

► Can we construct arrangements having some property?
 ► We need to find a method of **construction**.
Combinatorial questions

Given some discrete objects, what properties and structures do they have?

- Can we count the arrangements?
 - **Count** means give a *number*.

- Can we enumerate the arrangements?
 - **Enumerate** means give a *description* or *list*.

- Do any arrangements have a certain property?
 - This is an *existence* question.

- Can we construct arrangements having some property?
 - We need to find a method of *construction*.

- Does there exist a “best” arrangement?
 - **Prove optimality**.
Given some discrete objects, what properties and structures do they have?

- Can we count the arrangements?
 - Count means give a *number*.

- Can we enumerate the arrangements?
 - Enumerate means give a *description* or *list*.

- Do any arrangements have a certain property?
 - This is an *existence* question.

- Can we construct arrangements having some property?
 - We need to find a method of *construction*.

- Does there exist a “best” arrangement?
 - Prove optimality.

(Requires many proofs.) (Uses a different kind of reasoning!)
To do well in this class:

► **Come to class prepared.**
 ► Print out and read over course notes.
 ► Read sections before class.
To do well in this class:

► **Come to class prepared.**
 ► Print out and read over course notes.
 ► Read sections before class.

► **Form good study groups.**
 ► Discuss homework and classwork.
 ► Bounce proof ideas around.
 ► You will depend on this group.
To do well in this class:

- **Come to class prepared.**
 - Print out and read over course notes.
 - Read sections before class.

- **Form good study groups.**
 - Discuss homework and classwork.
 - Bounce proof ideas around.
 - You will depend on this group.

- **Put in the time.**
 - Three credits = (at least) nine hours / week out of class.
 - Homework stresses key concepts from class; learning takes time.
To do well in this class:

- **Come to class prepared.**
 - Print out and read over course notes.
 - Read sections before class.

- **Form good study groups.**
 - Discuss homework and classwork.
 - Bounce proof ideas around.
 - You will depend on this group.

- **Put in the time.**
 - Three credits = (at least) nine hours / week out of class.
 - Homework stresses key concepts from class; learning takes time.

- **Stay in contact.**
 - If you are confused, ask questions (in class and out).
 - Don’t fall behind in coursework or project.
 - I need to understand your concerns.
To do well in this class:

- **Come to class prepared.**
 - Print out and read over course notes.
 - Read sections before class.

- **Form good study groups.**
 - Discuss homework and classwork.
 - Bounce proof ideas around.
 - You will depend on this group.

- **Put in the time.**
 - Three credits = (at least) nine hours / week out of class.
 - Homework stresses key concepts from class; learning takes time.

- **Stay in contact.**
 - If you are confused, ask questions (in class and out).
 - Don’t fall behind in coursework or project.
 - I need to understand your concerns.

All homeworks online; first one due next Wednesday.
Here are four counting questions.

Q1. How many 8-character passwords are there using A–Z, a–z, 0–9?
Here are four counting questions.

Q1. How many 8-character passwords are there using A–Z, a–z, 0–9?

Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?
Here are four counting questions.

Q1. How many 8-character passwords are there using A–Z, a–z, 0–9?

Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?

Q3. How many Pick-6 lottery tickets are there? (Choose six numbers between 1–40.)
Here are four counting questions.

Q1. How many 8-character passwords are there using A–Z, a–z, 0–9?

Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?

Q3. How many Pick-6 lottery tickets are there? (Choose six numbers between 1–40.)

Q4. How many possible orders for a dozen donuts are there when the store has 30 varieties?
Here are four counting questions.

Q1. How many 8-character passwords are there using A–Z, a–z, 0–9?

Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?

Q3. How many Pick-6 lottery tickets are there? (Choose six numbers between 1–40.)

Q4. How many possible orders for a dozen donuts are there when the store has 30 varieties?

Think Write Pair Share: Order these from smallest to largest.
Counting words

Definition: A list or word is an ordered sequence of objects.

Definition: A \(k \)-list or \(k \)-word is a list of length \(k \).

- A list is always ordered and a set is always unordered.
Counting words

Definition: A list or word is an ordered sequence of objects.

Definition: A \(k \)-list or \(k \)-word is a list of length \(k \).

- A list is always ordered and a set is always unordered.

Question: How many lists have three entries where
- The first two entries can be either \(A \) or \(B \).
- The last entry is either 5 or 6.
Counting words

Definition: A **list** or **word** is an ordered sequence of objects.

Definition: A **k-list** or **k-word** is a list of length k.

- A **list** is always ordered and a **set** is always unordered.

Question: How many lists have three entries where

- The first two entries can be either A or B.
- The last entry is either 5 or 6.

Answer: We can solve this using a tree diagram:
Definition: A list or word is an ordered sequence of objects.

Definition: A \(k\)-list or \(k\)-word is a list of length \(k\).

- A list is always ordered and a set is always unordered.

Question: How many lists have three entries where
- The first two entries can be either \(A\) or \(B\).
- The last entry is either 5 or 6.

Answer: We can solve this using a tree diagram:

Alternatively: Notice two independent choices for each character. Multiply \(2 \cdot 2 \cdot 2 = 8\).
The Product Principle

This illustrates:

The product principle: When counting lists \((l_1, l_2, \ldots, l_k)\),

- **IF** there are \(c_1\) choices for entry \(l_1\), each leading to a different list.
- **AND IF** there are \(c_i\) choices for entry \(l_i\), no matter the choices made for \(l_1\) through \(l_{i-1}\), each leading to a different list.
- **THEN** there are \(c_1c_2\cdots c_k\) such lists.
The Product Principle

This illustrates:

The product principle: When counting lists \((l_1, l_2, \ldots, l_k)\),

IF there are \(c_1\) choices for entry \(l_1\), each leading to a different list.

AND IF there are \(c_i\) choices for entry \(l_i\), no matter the choices made for \(l_1\) through \(l_{i-1}\), each leading to a different list

THEN there are \(c_1 c_2 \cdots c_k\) such lists.
This illustrates:

The product principle: When counting lists \((l_1, l_2, \ldots, l_k)\),

IF there are \(c_1\) choices for entry \(l_1\), each leading to a different list.

AND IF there are \(c_i\) choices for entry \(l_i\), no matter the choices made for \(l_1\) through \(l_{i-1}\), each leading to a different list

THEN there are \(c_1c_2\cdots c_k\) such lists.

Caution: The product principle seems simple, but we must be careful when we use it.
Q1. How many 8-character passwords are there using A–Z, a–z, 0–9?

Answer: Creating a word of length 8, with ____ choices for each character. Therefore, the number of 8-character passwords is ____.

(=218,340,105,584,896)
Q1. How many 8-character passwords are there using A–Z, a–z, 0–9?

Answer: Creating a word of length 8, with ____ choices for each character. Therefore, the number of 8-character passwords is ____.

(=218,340,105,584,896)

In general, the number of words of length k that can be made from an alphabet of length n and where repetition is allowed is n^k
Application: Counting Subsets

Example. How many subsets of a set $S = \{s_1, s_2, \ldots, s_n\}$ are there?
Application: Counting Subsets

Example. How many subsets of a set $S = \{s_1, s_2, \ldots, s_n\}$ are there?

Strategy: “Try small problems, see a pattern.”
Application: Counting Subsets

Example. How many subsets of a set $S = \{s_1, s_2, \ldots, s_n\}$ are there?

Strategy: “Try small problems, see a pattern.”

- $n = 0$: $S = \emptyset$
Application: Counting Subsets

Example. How many subsets of a set \(S = \{s_1, s_2, \ldots, s_n\} \) are there?

Strategy: “Try small problems, see a pattern.”

\(n = 0: \quad S = \emptyset \rightsquigarrow \{\emptyset\}, \text{ size } 1. \)
Example. How many subsets of a set \(S = \{s_1, s_2, \ldots, s_n\} \) are there?

Strategy: “Try small problems, see a pattern.”

- \(n = 0 \): \(S = \emptyset \leadsto \{\emptyset\} \), size 1.
- \(n = 1 \): \(S = \{s_1\} \)
Example. How many subsets of a set $S = \{s_1, s_2, \ldots, s_n\}$ are there?

Strategy: “Try small problems, see a pattern.”

- $n = 0$: $S = \emptyset \leadsto \{\emptyset\}$, size 1.
- $n = 1$: $S = \{s_1\} \leadsto \emptyset, \{s_1\}$, size 2.
Application: Counting Subsets

Example. How many subsets of a set $S = \{s_1, s_2, \ldots, s_n\}$ are there?

Strategy: “Try small problems, see a pattern.”

- $n = 0$: $S = \emptyset \leadsto \{\emptyset\}$, size 1.
- $n = 1$: $S = \{s_1\} \leadsto \{\emptyset, \{s_1\}\}$, size 2.
- $n = 2$: $S = \{s_1, s_2\}$
Application: Counting Subsets

Example. How many subsets of a set \(S = \{s_1, s_2, \ldots, s_n\} \) are there?

\textit{Strategy}: “Try small problems, see a pattern.”

\begin{itemize}
 \item \(n = 0 \): \(S = \emptyset \leadsto \{\emptyset\} \), size 1.
 \item \(n = 1 \): \(S = \{s_1\} \leadsto \{\emptyset, \{s_1\}\} \), size 2.
 \item \(n = 2 \): \(S = \{s_1, s_2\} \leadsto \{\emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}\} \), size 4.
\end{itemize}
Example. How many subsets of a set $S = \{s_1, s_2, \ldots, s_n\}$ are there?

Strategy: “Try small problems, see a pattern.”

- $n = 0$: $S = \emptyset \leadsto \{\emptyset\}$, size 1.
- $n = 1$: $S = \{s_1\} \leadsto \{\emptyset, \{s_1\}\}$, size 2.
- $n = 2$: $S = \{s_1, s_2\} \leadsto \{\emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}\}$, size 4.
- $n = 3$: $S = \{s_1, s_2, s_3\} \leadsto \left\{ \emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}, \{s_3\}, \{s_1, s_3\}, \{s_2, s_3\}, \{s_1, s_2, s_3\} \right\}$, 8.

It appears that the number of subsets of S is ______. (notation)
Example. How many subsets of a set $S = \{s_1, s_2, \ldots, s_n\}$ are there?

Strategy: “Try small problems, see a pattern.”

- $n = 0$: $S = \emptyset \implies \{\emptyset\}$, size 1.
- $n = 1$: $S = \{s_1\} \implies \{\emptyset, \{s_1\}\}$, size 2.
- $n = 2$: $S = \{s_1, s_2\} \implies \{\emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}\}$, size 4.
- $n = 3$: $S = \{s_1, s_2, s_3\} \implies \{\emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}, \{s_3\}, \{s_1, s_3\}, \{s_2, s_3\}, \{s_1, s_2, s_3\}\}$, 8.

It appears that the number of subsets of S is _____. (notation)

This number also counts __________________________.
Example. How many subsets of a set $S = \{s_1, s_2, \ldots, s_n\}$ are there?

Strategy: “Try small problems, see a pattern.”

- $n = 0$: $S = \emptyset \leadsto \{\emptyset\}$, size 1.
- $n = 1$: $S = \{s_1\} \leadsto \{\emptyset, \{s_1\}\}$, size 2.
- $n = 2$: $S = \{s_1, s_2\} \leadsto \{\emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}\}$, size 4.
- $n = 3$: $S = \{s_1, s_2, s_3\} \leadsto \left\{ \emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}, \{s_3\}, \{s_1, s_3\}, \{s_2, s_3\}, \{s_1, s_2, s_3\} \right\}$, 8.

It appears that the number of subsets of S is _____. (notation)

This number also counts ____________________________.

We can label the subsets by whether or not they contain s_i.

For example, for $n = 3$, we label the subsets $\left\{ 000, 100, 010, 011, 100, 101, 011, 111 \right\}$.
Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?

Answer: The number of choices for each lineup spot are:

___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___.
Permutations

Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?

Answer: The number of choices for each lineup spot are:

___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___.

Multiplying gives that the number of lineups is ____ = 362,880.
Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?

Answer: The number of choices for each lineup spot are:

___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___.

Multiplying gives that the number of lineups is __ = 362,880.

Definition: A permutation of an \(n \)-set \(S \) is an (ordered) list of all elements of \(S \). There are \(n! \) such permutations.

“Permutation” always refers to a list without repetition.
Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?

Answer: The number of choices for each lineup spot are:

\[
_ _ _ _ _ _ _ _ _ _ _ _ _ .
\]

Multiplying gives that the number of lineups is \(_ _ _ = 362,880 \).

Definition: A **permutation** of an \(n \)-set \(S \) is an (ordered) list of all elements of \(S \). There are \(n! \) such permutations.

Definition: A **\(k \)-permutation** of an \(n \)-set \(S \) is an (ordered) list of \(k \) distinct elements of \(S \).

▶ “Permutation” always refers to a list **without repetition**.
Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?

Answer: The number of choices for each lineup spot are:

\[______________________ \cdot \]

Multiplying gives that the number of lineups is \(______________________ = 362,880 \).

Definition: A permutation of an \(n \)-set \(S \) is an (ordered) list of all elements of \(S \). There are \(n! \) such permutations.

Definition: A \(k \)-permutation of an \(n \)-set \(S \) is an (ordered) list of \(k \) distinct elements of \(S \). How many are there?

- “Permutation” always refers to a list without repetition.
Lists WITHOUT repetition

Question: How many 8-character passwords are there using $A–Z$, $a–z$, 0–9, containing no repeated character?

OK: 2eas3FGS, 10293465
Not OK: 2kdjng2, oOoOoOo0
Lists WITHOUT repetition

Question: How many 8-character passwords are there using A–Z, a–z, 0–9, containing no repeated character?

OK: 2eas3FGS, 10293465

Not OK: 2kdjfng2, oOoOoOo0

Answer: The number of choices for each character are:

___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___
Question: How many 8-character passwords are there using A–Z, a–z, 0–9, containing no repeated character?

OK: 2eas3FGS, 10293465 Not OK: 2kdjng2, oOoOoOo0

Answer: The number of choices for each character are:

$$_______$$

for a total of $(62)_8 = \frac{62!}{54!}$ passwords.
Lists WITHOUT repetition

Question: How many 8-character passwords are there using A–Z, a–z, 0–9, containing no repeated character?

OK: 2eas3FGS, 10293465
Not OK: 2kdjfng2, oOoOoOo0

Answer: The number of choices for each character are:

___ ___ ___ ___ ___ ___ ___ ___

for a total of \((62)_8 = \frac{62!}{54!}\) passwords.

In general, the number of words of length \(k\) that can be made from an alphabet of length \(n\) and where repetition is NOT allowed is \((n)_k\).
Question: How many 8-character passwords are there using A–Z, a–z, 0–9, containing no repeated character?

OK: 2eas3FGS, 10293465
Not OK: 2kdjfng2, oOoOoOo0

Answer: The number of choices for each character are:
\[
\begin{array}{ccccccc}
_ & _ & _ & _ & _ & _ & _ & _ \\
\end{array}
\]
for a total of \((62)^8 = \frac{62!}{54!}\) passwords.

In general, the number of words of length \(k\) that can be made from an alphabet of length \(n\) and where repetition is NOT allowed is \((n)_k\).

- That is, the number of \(k\)-permutations of an \(n\)-set is \((n)_k\).
Lists WITHOUT repetition

Question: How many 8-character passwords are there using A–Z, a–z, 0–9, containing no repeated character?

OK: 2eas3FGS, 10293465
Not OK: 2kdjfng2, oOoOoOo0

Answer: The number of choices for each character are:

___ ___ ___ ___ ___ ___ ___ ___

for a total of \((62)^8 = \frac{62!}{54!}\) passwords.

In general, the number of words of length \(k\) that can be made from an alphabet of length \(n\) and where repetition is NOT allowed is \((n)_k\).

- That is, the number of \(k\)-permutations of an \(n\)-set is \((n)_k\).
- Special case: For \(n\)-permutations of an \(n\)-set: \(n!\).
Notation

Some quantities appear frequently, so we use shorthand notation:

- \([n] := \{1, 2, \ldots, n\}\)
- \(2^S := \text{set of all subsets of } S\)
- \(n! := n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1\)
- \((n)_k := n \cdot (n-1) \cdot (n-2) \cdots (n-k+1) = \frac{n!}{(n-k)!}\)

★ Leave answers to counting questions in terms of these quantities.

★ Do NOT multiply out unless you are comparing values.
Notation

Some quantities appear frequently, so we use shorthand notation:

- $[n] := \{1, 2, \ldots, n\}$
- $2^S := \text{set of all subsets of } S$
- $n! := n \cdot (n - 1) \cdot (n - 2) \cdots 2 \cdot 1$
- $(n)_k := n \cdot (n - 1) \cdot (n - 2) \cdots (n - k + 1) = \frac{n!}{(n - k)!}$
- $\binom{n}{k} := \frac{n!}{k!(n - k)!} = \frac{(n)_k}{k!}$
- $\binom{n}{k} := \binom{k + n - 1}{k}$

★ Leave answers to counting questions in terms of these quantities.

★ **Do NOT** multiply out unless you are comparing values.
My question: In how many ways are there to choose a subset of \(k \) objects out of a set of \(n \) objects?
My question: In how many ways are there to choose a subset of \(k \) objects out of a set of \(n \) objects?

Your answer: \(\binom{n}{k} \). “\(n \) choose \(k \)”.
Counting subsets of a set

My question: In how many ways are there to choose a subset of \(k \) objects out of a set of \(n \) objects?

Your answer: \(\binom{n}{k} \). “\(n \) choose \(k \).”

Question: In how many ways can you choose 4 objects out of 10?
Counting subsets of a set

My question: In how many ways are there to choose a subset of k objects out of a set of n objects?

Your answer: $\binom{n}{k}$. “n choose k”.

Question: In how many ways can you choose 4 objects out of 10? $\binom{10}{4}$
Counting subsets of a set

My question: In how many ways are there to choose a subset of \(k \) objects out of a set of \(n \) objects?

Your answer: \(\binom{n}{k} \). “\(n \) choose \(k \).”

Question: In how many ways can you choose 4 objects out of 10? \(\binom{10}{4} \)

Q3. How many Pick-6 lottery tickets are there? (Choose six numbers between 1–40.)
Counting subsets of a set

My question: In how many ways are there to choose a subset of k objects out of a set of n objects?

Your answer: \(\binom{n}{k} \). “n choose k”.

Question: In how many ways can you choose 4 objects out of 10? \(\binom{10}{4} \)

Q3. How many Pick-6 lottery tickets are there? (Choose six numbers between 1–40.)

Answer: \(\binom{40}{6} \)
Counting subsets of a set

My question: In how many ways are there to choose a subset of k objects out of a set of n objects?

Your answer: \(\binom{n}{k} \). “n choose k”.

Question: In how many ways can you choose 4 objects out of 10? \(\binom{10}{4} \)

Q3. How many Pick-6 lottery tickets are there? (Choose six numbers between 1–40.)

Answer: \(\binom{40}{6} = 3,838,380. \)
My question: In how many ways are there to choose a subset of \(k\) objects out of a set of \(n\) objects?

Your answer: \(\binom{n}{k}\). “\(n\) choose \(k\)”.

Question: In how many ways can you choose 4 objects out of 10? \(\binom{10}{4}\)

Q3. How many Pick-6 lottery tickets are there? (Choose six numbers between 1–40.)

Answer: \(\binom{40}{6} = 3,838,380\).

\(\binom{n}{k}\) is called a **binomial coefficient**.
Counting subsets of a set

My question: In how many ways are there to choose a subset of k objects out of a set of n objects?

Your answer: \(\binom{n}{k} \). “n choose k”.

Question: In how many ways can you choose 4 objects out of 10? \(\binom{10}{4} \)

Q3. How many Pick-6 lottery tickets are there?
(Choose six numbers between 1–40.)

Answer: \(\binom{40}{6} = 3,838,380. \)

- \(\binom{n}{k} \) is called a binomial coefficient.

- Alternate phrasing: How many k-subsets of an n-set are there?
Counting subsets of a set

My question: In how many ways are there to choose a subset of k objects out of a set of n objects?

Your answer: $\binom{n}{k}$. “n choose k”.

Question: In how many ways can you choose 4 objects out of 10? $\binom{10}{4}$

Q3. How many Pick-6 lottery tickets are there? (Choose six numbers between 1–40.)

Answer: $\binom{40}{6} = 3,838,380$.

$\binom{n}{k}$ is called a binomial coefficient.

Alternate phrasing: How many k-subsets of an n-set are there?

The individual objects we are counting are unordered. They are subsets, not lists.
A formula for \(\binom{n}{k} \)

You may know that \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \). But why?
A formula for $\binom{n}{k}$

You may know that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. But why?

Let’s rearrange:

$$(n)_k = \binom{n}{k} k!$$
A formula for $\binom{n}{k}$

You may know that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. But why?

Let's rearrange:

$\binom{n}{k} = \frac{(n)_k}{k!} = \left(\frac{n}{k}\right) k!$

We ask the question:

“In how many ways are there to create a k-list of an n-set?”

LHS:

RHS:
A formula for $\binom{n}{k}$

You may know that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. But why?

Let’s rearrange:

$$(n)_k = \binom{n}{k} k!$$

We ask the question:

“In how many ways are there to create a k-list of an n-set?”

LHS:

RHS:

Since we counted the same quantity twice, they must be equal!
Counting Multisets

Definition: A multiset is a set where repetition is included.
Counting Multisets

Definition: A **multiset** is a set where repetition is included.

- Example. \(\{a, a, b, d\} \) is a multiset.
Counting Multisets

Definition: A multiset is a set where repetition is included.

- Example. \{a, a, b, d\} is a multiset.
- \(M = \{a, a, b, d\}\) is a multisubset of \(S = \{a, b, c, d\}\) because all entries of \(M\) are members of \(S\).
Counting Multisets

Definition: A multiset is a set where repetition is included.

- Example. \(\{a, a, b, d\} \) is a multiset.
- \(M = \{a, a, b, d\} \) is a multiset of \(S = \{a, b, c, d\} \) because all entries of \(M \) are members of \(S \).

Think Write Pair Share: Enumerate all multisubsets of \([3]\). [In other words, list them all or completely describe the list.]

Answer:
Definition: A multiset is a set where repetition is included.

Example. \(\{a, a, b, d\} \) is a multiset.

\(M = \{a, a, b, d\} \) is a multiset of \(S = \{a, b, c, d\} \) because all entries of \(M \) are members of \(S \).

Think Write Pair Share: Enumerate all multisubsets of \([3] \).
[In other words, list them all or completely describe the list.]

Answer:

How would you describe a \(k \)-multisubset of \([n] \)?
Stars and Bars

Question: How many \(k \)-multisets are there from an \(n \)-set?

— *is the same as* —

Question: How many ways are there to place \(k \) indistinguishable balls into \(n \) distinguishable bins?
Stars and Bars

Question: How many k-multisets are there from an n-set?

— *is the same as* —

Question: How many ways are there to place k indistinguishable balls into n distinguishable bins?

\[\{a^2, b^0, c^3, d^1\} \quad n = 4 \quad k = 6 \]
Stars and Bars

Question: How many k-multisets are there from an n-set?

— *is the same as* —

Question: How many ways are there to place k indistinguishable balls into n distinguishable bins?

\[\{a^2, b^0, c^3, d^1\} \quad n = 4 \quad k = 6 \]
Stars and Bars

Question: How many \(k \)-multisets are there from an \(n \)-set?

— *is the same as* —

Question: How many ways are there to place \(k \) indistinguishable balls into \(n \) distinguishable bins?

\[
\{a^2, b^0, c^3, d^1\} \quad n = 4 \\
\{ \circ \circ \circ \circ \} \quad k = 6
\]
Stars and Bars

Question: How many k-multisets are there from an n-set?

— *is the same as* —

Question: How many ways are there to place k indistinguishable balls into n distinguishable bins?

— *is the same as* —

Question: How many $\{\ast, \mid\}$-words contain k stars and $(n - 1)$ bars?

\[
\{a^2, b^0, c^3, d^1\} \quad n = 4 \quad k = 6
\]
Stars and Bars

Question: How many k-multisets are there from an n-set?

— is the same as —

Question: How many ways are there to place k indistinguishable balls into n distinguishable bins?

— is the same as —

Question: How many $\{\ast, |\}$-words contain k stars and $(n - 1)$ bars?

\[
\{a^2, b^0, c^3, d^1\} \quad n = 4 \quad k = 6
\]
Stars and Bars

Question: How many \(k \)-multisets are there from an \(n \)-set?

— *is the same as* —

Question: How many ways are there to place \(k \) indistinguishable balls into \(n \) distinguishable bins?

— *is the same as* —

Question: How many \(\{*, |\} \)-words contain \(k \) stars and \((n - 1)\) bars?

— *which we can count by:* —

Question: How many ways are there to choose \(k \) star positions out of \(k + n - 1 \)?
Stars and Bars

Question: How many \(k \)-multisets are there from an \(n \)-set?

— *is the same as* —

Question: How many ways are there to place \(k \) indistinguishable balls into \(n \) distinguishable bins?

— *is the same as* —

Question: How many \(\{\ast, |\} \)-words contain \(k \) stars and \((n - 1) \) bars?

— *which we can count by:* —

Question: How many ways are there to choose \(k \) star positions out of \(k + n - 1 \)?

\[
\binom{k + n - 1}{k} =: \binom{n}{k}
\]
Q4. How many possible orders for a dozen donuts are there when the store has 30 varieties?
Q4. How many possible orders for a dozen donuts are there when the store has 30 varieties?

Answer: \(\binom{30}{12} = \binom{12}{1} \) =
Q4. How many possible orders for a dozen donuts are there when the store has 30 varieties?

Answer: \(\binom{30}{12} = 7,898,654,920 \).
Q4. How many possible orders for a dozen donuts are there when the store has 30 varieties?

Answer: \(\binom{30}{12} = 7,898,654,920. \)

Correct order:

Q2. Order 9 baseball players \((9!)\) 362,880
Q3. Pick-6; numbers 1–40 \(\binom{40}{6}\) 3,838,380
Q4. 12 donuts from 30 \(\binom{30}{12}\) 7,898,654,920
Q1. 8-character passwords \((62^8)\) 218,340,105,584,896
Summary

<table>
<thead>
<tr>
<th>Repetition</th>
<th>Order Matters (Choose a List)</th>
<th>Order Doesn’t Matter (Choose a Set)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Allowed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th></th>
<th>order matters (choose a list)</th>
<th>order doesn’t matter (choose a set)</th>
</tr>
</thead>
<tbody>
<tr>
<td>repetition</td>
<td>(n^k)</td>
<td></td>
</tr>
<tr>
<td>repetition</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>not allowed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th></th>
<th>order matters (choose a list)</th>
<th>order doesn’t matter (choose a set)</th>
</tr>
</thead>
<tbody>
<tr>
<td>repetition</td>
<td>n^k</td>
<td></td>
</tr>
<tr>
<td>allowed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>repetition</td>
<td>$(n)_k$</td>
<td></td>
</tr>
<tr>
<td>not allowed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th>Repetition</th>
<th>Order Matters (Choose a List)</th>
<th>Order Doesn’t Matter (Choose a Set)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowed</td>
<td>n^k</td>
<td></td>
</tr>
<tr>
<td>Not Allowed</td>
<td>$(n)_k$</td>
<td>$(\binom{n}{k})$</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th>Repetition</th>
<th>Order Matters (Choose a List)</th>
<th>Order Doesn’t Matter (Choose a Set)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowed</td>
<td>n^k</td>
<td>$\binom{n}{k}$</td>
</tr>
<tr>
<td>Not Allowed</td>
<td>$(n)_k$</td>
<td>$(n \choose k)$</td>
</tr>
</tbody>
</table>