Knight’s Tours

In chess, a knight (\(\text{♞} \)) is a piece that moves in an “L”: two spaces over and one space to the side.

Question Is it possible for a knight to start on some square and, by a series of valid knight moves, visit each square on an \(8 \times 8\) chessboard once? (How about return to where it started?)

Definition: A path of the first kind is called an open knight’s tour. A cycle of the second kind is called a closed knight’s tour.
Question: Are there any knight's tours on an $m \times n$ chessboard?
The Graph Theory of Knight’s Tours

For any board we can draw a corresponding knight move graph: Create a vertex for every square on the board and create edges between vertices that are a knight’s move away.

An open/closed knight’s tour
on the board

A knight move always alternates between white and black squares. Therefore, a knight move graph is always ________________.

Question Are there any knight’s tours on an $m \times n$ chessboard?
Knight’s Tour Theorem

Theorem An $m \times n$ chessboard with $m \leq n$ has a closed knight’s tour unless one or more of these conditions holds:

1. m and n are both odd.
2. $m = 1$, 2, or 4.
3. $m = 3$ and $n = 4$, 6, or 8.

“Proof” We will only show that it is impossible in these cases.

Case 1. When m and n are both odd,

Case 2. When $m = 1$ or 2, the knight move graph is not connected.
Knight’s Tour Theorem

Case 2. When \(m = 4 \), draw the knight move graph \(G \).

Suppose there exists a Hamiltonian cycle \(C \) in the graph \(G \). Since \(G \) is bipartite, \(C \) alternates between white and black vertices.

Notice that every red vertex in \(C \) is adjacent to only blue vertices. And, there are the same number of red and blue vertices.

So, \(C \) must alternate between red and blue vertices. This means: All vertices of \(C \) are “white and red” or “black and blue”.
Knight’s Tour Theorem

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:

Assume that there is a Hamiltonian cycle C in G. Then, C visits each vertex v and uses two of v’s incident edges. If $\deg(v) = 2$, then both of v’s incident edges are in C. Draw in all these “forced edges” above. With just these forced edges, there is already a cycle C' of length four. This cycle C' cannot be a subgraph of any Hamiltonian cycle, contradicting its existence.

The 3×8 case is similar, and part of your homework.

See also: “Knight’s Tours on a Torus”, by J. J. Watkins, R. L. Hoenigman