MATH 634, Spring 2013

Homework 4
due 4:30pm on Wednesday, March 20.
Background reading: Pearls in Graph Theory, Section 3.1.
4-1. (a) Prove that there is no closed knight's tour on the 3×8 grid.
(b) Find a closed knight's tour on the 3×5 torus.

4-2. (a) Find a graph E which has an Eulerian circuit but no Hamiltonian cycle.
(b) Find a graph H which has a Hamiltonian cycle but no Eulerian circuit.
[If either is impossible, prove why you can not find such a graph.]
4 -3. Draw the binary de Bruijn graph of order $n=5$. Find one binary de Bruijn sequence of order 5 .
[Note: The graph will have 16 vertices and the sequence will be of length 32.]
4-4. Find a decomposition of the Grötzsch graph into the minimal possible number of paths.
4-5. Find a one-way Eulerian trail in the graph of Figure 3.3.6. (p. 67)
[Note: A discussion of one-way Eulerian trails in infinite graphs occurs above the figure.]
4-6. Sudoku is sooo last decade! Solve this Hashi puzzle.

Instructions: Draw in lines to connect the circles such that:

- Lines must be either perfectly vertical or horizontal.
- Up to two lines may be drawn connecting the same circles.
- The lines may not cross.
- The degree of each vertex is the enclosed number.
- The entire graph must be connected.

For many more Hashi puzzles and other fun games, visit http://www.menneske.no/hashi/eng/ \& http://www.puzzle-bridges.com/.

