MATH 634, Spring 2013

Homework 3
due 4:30pm on Monday, February 25.
Background reading: Pearls in Graph Theory, Sections 1.3 and 2.1.
3-1. (a) Prove that if n is large enough, then the following statement is true:
For all graphs on n vertices, either G or G^{c} contains a cycle.
(b) For which n does this start to be true?

3-2. Prove Theorem 1.3.4, that every tree with at least one edge has at least two leaves.
3-3. Consider a tree T that has only vertices of degree 1,2 , and 3 . Suppose that T has exactly 10 vertices of degree 3 . Find and prove how many leaves T has.
[Important: Prove your answer for any tree T satisfying these conditions.]
3-4. Is Figure 2.1.5 critical? Justify.
[Don't believe everything you read!]
3-5. Let G be a graph with n vertices and n edges.
(a) Suppose G is connected. How many cycles does G have? Prove it.
(b) Suppose G is NOT connected. What can you say about the number of cycles in the graph? Can you determine a formula?
[Part (b) is an exploration question. I want you to explore what happens and write up as much as you can about what you learn.]

