MATH 634, Spring 2013
 Homework 2
 due 4:30pm on Wednesday, February 6.

Background reading: Pearls in Graph Theory, Sections 1.1 and 1.2.
$\mathbf{2 - 1}$. Are any of these degree sequences graphic?
(a) 5544322
(b) 6644422
(c) 666666
(d) 6666666

If you determine that the sequence is graphic, draw a graph with the given degree sequence. If you determine that the sequence is not graphic, prove it.
$\mathbf{2 - 2}$. Prove that no graph has all degrees different. That is, prove that in a degree sequence of a graph, there is at least one repeated number.
$\mathbf{2 - 3}$. Explore the proof of Theorem 1.1.2.
The graph below has degree sequence $\left(\mathcal{S}_{1}\right) 443332222$. Define $\left(\mathcal{S}_{2}\right)$ to be 322222221 . Walk through the steps of the proof of Theorem 1.1.2 in the following way.
First, let us choose vertex c from the graph to be vertex S from the proof. Next, assign to each of the remaining vertices $(a-j)$ a name of the form T_{i} or D_{i}, just as in the proof.
(a) If you delete vertex S, does the new graph have degree sequence $\left(\mathcal{S}_{2}\right)$?
(b) Use the method in the proof to modify the original graph (possibly applying the algorithm multiple times) so that the resulting graph is such that removing S gives a graph with degree sequence $\left(\mathcal{S}_{2}\right)$.

$\mathbf{2 - 4}$. Let G be a connected regular graph with 22 edges. What are the possible number of vertices that G may have?

2-5. Consider the graphs in Figure 1.2.4. Are any two of them isomorphic? Prove that you are correct.

2-6. Draw the Schlegel diagram for two of the following polyhedra: Icosidodecahedron, Truncated Icosahedron, Rhombicuboctahedron, Permutohedron of order 4, Snub Cube. (You will have to do some investigating to determine what these polyhedra are.)

