Some graphs are almost planar.

▶ If $K_{3,3}$ didn't have that last edge, it would be planar!

Some graphs are *almost* planar.

▶ If $K_{3,3}$ didn't have that last edge, it would be planar!

So we ask: How non-planar is it?

★ We will discuss three ways to answer this question.

Some graphs are *almost* planar.

▶ If $K_{3,3}$ didn't have that last edge, it would be planar!

So we ask: How non-planar is it?

★ We will discuss **three** ways to answer this question.

Definition: The **crossing number** of a graph G, denoted cr(G), is the minimum number of crossings in any simple drawing of G.

Some graphs are *almost* planar.

▶ If $K_{3,3}$ didn't have that last edge, it would be planar!

So we ask: How non-planar is it?

★ We will discuss **three** ways to answer this question.

Definition: The **crossing number** of a graph G, denoted cr(G), is the minimum number of crossings in any simple drawing of G.

▶ So if G is planar, cr(G) = 0, and if G is non-planar, $cr(G) \ge 1$.

Some graphs are *almost* planar.

▶ If $K_{3,3}$ didn't have that last edge, it would be planar!

So we ask: How non-planar is it?

★ We will discuss **three** ways to answer this question.

Definition: The **crossing number** of a graph G, denoted cr(G), is the minimum number of crossings in any simple drawing of G.

- ▶ So if G is planar, cr(G) = 0, and if G is non-planar, $cr(G) \ge 1$.
- ▶ To prove cr(G) = 1:
 - ▶ Prove G is non-planar (Kuratowski or otherwise) and
 - Find a drawing of G with only one crossing.

Some graphs are *almost* planar.

▶ If $K_{3,3}$ didn't have that last edge, it would be planar!

So we ask: How non-planar is it?

★ We will discuss **three** ways to answer this question.

Definition: The **crossing number** of a graph G, denoted cr(G), is the minimum number of crossings in any simple drawing of G.

- ▶ So if G is planar, cr(G) = 0, and if G is non-planar, $cr(G) \ge 1$.
- ▶ To prove cr(G) = 1:
 - ▶ Prove *G* is non-planar (Kuratowski or otherwise) and
 - ▶ Find a drawing of *G* with only one crossing.

Example.

Theorem 9.1.4 The crossing number of K_6 is 3.

Theorem 9.1.4 The crossing number of K_6 is 3.

Proof. First, here is a drawing of K_6 with three crossings:

We conclude that $cr(K_6) \leq 3$.

Theorem 9.1.4 The crossing number of K_6 is 3.

Proof. First, here is a drawing of K_6 with three crossings:

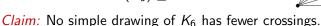
We conclude that $cr(K_6) \leq 3$.

Claim: No simple drawing of K_6 has fewer crossings.

Theorem 9.1.4 The crossing number of K_6 is 3.

Proof. First, here is a drawing of K_6 with three crossings:

We conclude that $cr(K_6) \leq 3$.

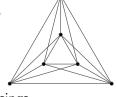


- ▶ Suppose there exists a drawing of K_6 with two crossings.
- ▶ Both crossings involve four distinct vertices.

Theorem 9.1.4 The crossing number of K_6 is 3.

Proof. First, here is a drawing of K_6 with three crossings:

We conclude that $cr(K_6) \leq 3$.



Claim: No simple drawing of K_6 has fewer crossings.

- ▶ Suppose there exists a drawing of K_6 with two crossings.
- Both crossings involve four distinct vertices.
- \blacktriangleright Since K_6 has six vertices, there is a vertex ν in both crossings.
- \triangleright If we delete v, the resulting graph would have no crossings.

Theorem 9.1.4 The crossing number of K_6 is 3.

Proof. First, here is a drawing of K_6 with three crossings:

We conclude that $cr(K_6) \leq 3$.

Claim: No simple drawing of K_6 has fewer crossings.

- ▶ Suppose there exists a drawing of K_6 with two crossings.
- ▶ Both crossings involve four distinct vertices.
- \blacktriangleright Since K_6 has six vertices, there is a vertex ν in both crossings.
- \triangleright If we delete v, the resulting graph would have no crossings.
- ▶ This would give a plane drawing of K_5 , a contradiction!

Therefore, $cr(K_6) = 3$.

Definition: The **thickness** of a graph G, denoted $\theta(G)$, is the smallest number of planar subgraphs into which G can be decomposed.

That is, find the optimal way to partition of the edge set of G into disjoint subsets, each of which is a planar graph.

Definition: The **thickness** of a graph G, denoted $\theta(G)$, is the smallest number of planar subgraphs into which G can be decomposed.

That is, find the optimal way to partition of the edge set of G into disjoint subsets, each of which is a planar graph.

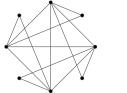
▶ So if G is planar, $\theta(G) = 1$, and if G is non-planar, $cr(G) \ge 2$.

Definition: The **thickness** of a graph G, denoted $\theta(G)$, is the smallest number of planar subgraphs into which G can be decomposed.

That is, find the optimal way to partition of the edge set of G into disjoint subsets, each of which is a planar graph.

▶ So if G is planar, $\theta(G) = 1$, and if G is non-planar, $cr(G) \ge 2$.

Example. $\theta(K_8) = 2$ since we know K_8 is nonplanar and below is a decomposition of K_8 into two planar subgraphs:

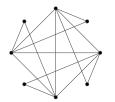


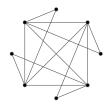
Definition: The **thickness** of a graph G, denoted $\theta(G)$, is the smallest number of planar subgraphs into which G can be decomposed.

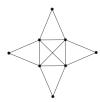
That is, find the optimal way to partition of the edge set of G into disjoint subsets, each of which is a planar graph.

▶ So if G is planar, $\theta(G) = 1$, and if G is non-planar, $cr(G) \ge 2$.

Example. $\theta(K_8) = 2$ since we know K_8 is nonplanar and below is a decomposition of K_8 into two planar subgraphs:







A simple bound on thickness is:

Theorem 9.2.1. If G has p vertices and q edges, then $\theta(G) \geq \frac{q}{3p-6}$.

A simple bound on thickness is:

Theorem 9.2.1. If G has p vertices and q edges, then $\theta(G) \ge \frac{q}{3p-6}$. Proof. Suppose that $G = H_1 \cup H_2 \cup \cdots \cup H_{\theta(G)}$ is a decomposition of G into planar subgraphs H_i , with p vertices and q_i edges.

We know that each H_i must satisfy $q_i \leq 3p - 6$. Therefore

$$q = \sum_{i=1}^{\theta(G)} q_i \le \sum_{i=1}^{\theta(G)} (3p-6) = \theta(G)(3p-6).$$

A simple bound on thickness is:

Theorem 9.2.1. If G has p vertices and q edges, then $\theta(G) \ge \frac{q}{3p-6}$. Proof. Suppose that $G = H_1 \cup H_2 \cup \cdots \cup H_{\theta(G)}$ is a decomposition of G into planar subgraphs H_i , with p vertices and q_i edges.

We know that each H_i must satisfy $q_i \leq 3p - 6$. Therefore

$$q = \sum_{i=1}^{\theta(G)} q_i \le \sum_{i=1}^{\theta(G)} (3p - 6) = \theta(G)(3p - 6).$$

Similarly,

Theorem 9.2.2. If G is a graph with girth ≥ 4 , then $\theta(G) \geq \frac{q}{2p-4}$.

A simple bound on thickness is:

Theorem 9.2.1. If G has p vertices and q edges, then $\theta(G) \ge \frac{q}{3p-6}$. Proof. Suppose that $G = H_1 \cup H_2 \cup \cdots \cup H_{\theta(G)}$ is a decomposition of G into planar subgraphs H_i , with p vertices and q_i edges.

We know that each H_i must satisfy $q_i \leq 3p - 6$. Therefore

$$q = \sum_{i=1}^{\theta(G)} q_i \le \sum_{i=1}^{\theta(G)} (3p - 6) = \theta(G)(3p - 6).$$

Similarly,

Theorem 9.2.2. If G is a graph with girth ≥ 4 , then $\theta(G) \geq \frac{q}{2p-4}$.

Fact:
$$\theta(K_n) = \left\{ \begin{bmatrix} \frac{n+7}{6} \end{bmatrix} & n \neq 9, 10 \\ 3 & n = 9, 10 \end{bmatrix} \right\}$$

Proved by Beineke, Harary, Vasak, Alekseev, Gonchakov

A planar graph can always be **embedded on** a sphere. That is: it can be drawn without crossings on the surface of a sphere.

Nonplanar graphs can not be embedded on a plane (or sphere).

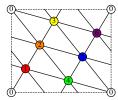
A planar graph can always be **embedded on** a sphere. That is: it can be drawn without crossings on the surface of a sphere.

Nonplanar graphs can not be embedded on a plane (or sphere). What about more complicated surfaces? Like a torus? Example. We can embed K_5 on a torus. (Two ways to see.)

A planar graph can always be **embedded on** a sphere. *That is:* it can be drawn without crossings on the surface of a sphere.

Nonplanar graphs can not be embedded on a plane (or sphere). What about more complicated surfaces? Like a torus? Example. We can embed K_5 on a torus. (Two ways to see.)

Example. We can even embed K_7 on a torus:

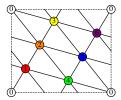


A planar graph can always be **embedded on** a sphere. That is: it can be drawn without crossings on the surface of a sphere.

Nonplanar graphs can not be embedded on a plane (or sphere). What about more complicated surfaces? Like a torus? Example. We can embed K_5 on a torus. (Two ways to see.)

Example. We can even embed K_7 on a torus:

However, we can't embed K_8 on a torus.

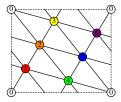


A planar graph can always be **embedded on** a sphere. *That is:* it can be drawn without crossings on the surface of a sphere.

Nonplanar graphs can not be embedded on a plane (or sphere). What about more complicated surfaces? Like a torus? Example. We can embed K_5 on a torus. (Two ways to see.)

Example. We can even embed K_7 on a torus:

However, we can't embed K_8 on a torus. Perhaps on a surface of genus g?



Definition: The **genus** of a graph is the smallest g such that G can be embedded on a surface of genus g with no crossings.

▶ If G is planar, genus(G) = 0; if G is non-planar, genus(G) ≥ 1 .

Definition: The **genus** of a graph is the smallest g such that G can be embedded on a surface of genus g with no crossings.

▶ If G is planar, genus(G) = 0; if G is non-planar, genus(G) ≥ 1 .

Fact: (Ringel, Youngs, 1968) The genus of a complete graph is

genus
$$(K_n) = \left| \frac{(n-3)(n-4)}{12} \right|$$

Definition: The **genus** of a graph is the smallest g such that G can be embedded on a surface of genus g with no crossings.

▶ If G is planar, genus(G) = 0; if G is non-planar, genus(G) ≥ 1 .

Fact: (Ringel, Youngs, 1968) The genus of a complete graph is

genus
$$(K_n) = \left\lceil \frac{(n-3)(n-4)}{12} \right\rceil$$

Embedding on higher genus surfaces changes Euler's formula!

Theorem. Let G be a graph of genus g. Suppose you have an embedding of G on a surface of genus g with no crossings. If r is the number of regions, then $p - q + r = \mathbf{2} - \mathbf{2g}$.

Example. In our embedding of K_5 on the torus (genus 1):

Complete graphs

Planarity statistics for complete graphs:

Statistic	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\operatorname{cr}(K_n)$	0	1	3	9	18	36	60	100	150	225	?	?	?	?	?
$\theta(K_n)$	1	2	2	2	2	3	3	3	3	3	3	3	3	4	4
genus (K_n)	0	1	1	1	2	3	4	5	6	8	10	11	13	16	18

Complete graphs

Planarity statistics for complete graphs:

Statistic	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\operatorname{cr}(K_n)$	0	1	3	9	18	36	60	100	150	225	?	?	?	?	?
$\theta(K_n)$	1	2	2	2	2	3	3	3	3	3	3	3	3	4	4
genus (K_n)	0	1	1	1	2	3	4	5	6	8	10	11	13	16	18

The crossing number of a complete graph is unknown for $n \ge 13$. Conjecture. (Guy, 1972) The crossing number of a complete graph is

$$\operatorname{cr}(G) = \frac{1}{4} \left| \frac{n}{2} \right| \left| \frac{n-1}{2} \right| \left| \frac{n-2}{2} \right| \left| \frac{n-3}{2} \right|$$

The cases $cr(K_{11}) = 100$ and $cr(K_{12}) = 150$ were proved in **2007**.