The crossing number of a graph

Some graphs are almost planar.

- If $K_{3,3}$ didn't have that last edge, it would be planar!

So we ask: How non-planar is it?
\star We will discuss three ways to answer this question.
Definition: The crossing number of a graph G, denoted $\operatorname{cr}(G)$, is the minimum number of crossings in any simple drawing of G.

- So if G is planar, $\operatorname{cr}(G)=0$, and if G is non-planar, $\operatorname{cr}(G) \geq 1$.
- To prove $\operatorname{cr}(G)=1$:
- Prove G is non-planar (Kuratowski or otherwise) and
- Find a drawing of G with only one crossing.

Example.

The crossing number of K_{6}

Theorem 9.1.4 The crossing number of K_{6} is 3 .
Proof. First, here is a drawing of K_{6} with three crossings:
We conclude that $\operatorname{cr}\left(K_{6}\right) \leq 3$.

Claim: No simple drawing of K_{6} has fewer crossings.

- Suppose there exists a drawing of K_{6} with two crossings.
- Both crossings involve four distinct vertices.
- Since K_{6} has six vertices, there is a vertex v in both crossings.
- If we delete v, the resulting graph would have no crossings.
- This would give a plane drawing of K_{5}, a contradiction!

Therefore, $\operatorname{cr}\left(K_{6}\right)=3$.

The thickness of a graph

Definition: The thickness of a graph G, denoted $\theta(G)$, is the smallest number of planar subgraphs into which G can be decomposed.
That is, find the optimal way to partition of the edge set of G into disjoint subsets, each of which is a planar graph.

- So if G is planar, $\theta(G)=1$, and if G is non-planar, $\operatorname{cr}(G) \geq 2$.

Example. $\theta\left(K_{8}\right)=2$ since we know K_{8} is nonplanar and below is a decomposition of K_{8} into two planar subgraphs:

Theorems about thickness

A simple bound on thickness is:
Theorem 9.2.1. If G has p vertices and q edges, then $\theta(G) \geq \frac{q}{3 p-6}$. Proof. Suppose that $G=H_{1} \cup H_{2} \cup \cdots \cup H_{\theta(G)}$ is a decomposition of G into planar subgraphs H_{i}, with p vertices and q_{i} edges.

We know that each H_{i} must satisfy $q_{i} \leq 3 p-6$. Therefore

$$
q=\sum_{i=1}^{\theta(G)} q_{i} \leq \sum_{i=1}^{\theta(G)}(3 p-6)=\theta(G)(3 p-6)
$$

Similarly,
Theorem 9.2.2. If G is a graph with girth ≥ 4, then $\theta(G) \geq \frac{q}{2 p-4}$.
Fact: $\theta\left(K_{n}\right)=\left\{\begin{array}{cc}\left\lfloor\frac{n+7}{6}\right\rfloor & \begin{array}{c}n \neq 9,10 \\ 3\end{array} \\ n=9,10\end{array}\right\}$
Proved by Beineke, Harary, Vasak, Alekseev, Gonchakov

The genus of a graph

A planar graph can always be embedded on a sphere.
That is: it can be drawn without crossings on the surface of a sphere.

Nonplanar graphs can not be embedded on a plane (or sphere).
What about more complicated surfaces? Like a torus?
Example. We can embed K_{5} on a torus. (Two ways to see.)

Example. We can even embed K_{7} on a torus:

However, we can't embed K_{8} on a torus. Perhaps on a surface of genus g ?

The genus of a graph

Definition: The genus of a graph is the smallest g such that G can be embedded on a surface of genus g with no crossings.

- If G is planar, $\operatorname{genus}(G)=0$; if G is non-planar, $\operatorname{genus}(G) \geq 1$.

Fact: (Ringel, Youngs, 1968) The genus of a complete graph is

$$
\operatorname{genus}\left(K_{n}\right)=\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil
$$

Embedding on higher genus surfaces changes Euler's formula!
Theorem. Let G be a graph of genus g. Suppose you have an embedding of G on a surface of genus g with no crossings. If r is the number of regions, then $p-q+r=2-2 \mathrm{~g}$.

Example. In our embedding of K_{5} on the torus (genus 1):

Complete graphs

Planarity statistics for complete graphs:

Statistic	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$\operatorname{cr}\left(K_{n}\right)$	0	1	3	9	18	36	60	100	150	225	$?$	$?$	$?$	$?$
$\theta\left(K_{n}\right)$	1	2	2	2	2	3	3	3	3	3	3	3	3	4

The crossing number of a complete graph is unknown for $n \geq 13$.
Conjecture. (Guy, 1972) The crossing number of a complete graph is

$$
\operatorname{cr}(G)=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor
$$

The cases $\operatorname{cr}\left(K_{11}\right)=100$ and $\operatorname{cr}\left(K_{12}\right)=150$ were proved in 2007.

