Transshipment

The Transshipment Problem: Given m suppliers and n customers, Is it possible for the customers (suppliers) to have their orders filled?

Transshipment

The Transshipment Problem: Given m suppliers and n customers, Is it possible for the customers (suppliers) to have their orders filled?

- Each supplier has some amount of product.
- Each customer desires some amount of product.
- Not all suppliers deliver to each customer.

Transshipment

The Transshipment Problem: Given m suppliers and n customers, Is it possible for the customers (suppliers) to have their orders filled?

- Each supplier has some amount of product.
- Each customer desires some amount of product.
- Not all suppliers deliver to each customer.

Example. Suppliers A, B, C have $300,100,100$ units of product. Customers I, II, III, IV, desire 200, 150, 100, 50 units of product. Neither A nor B delivers to $I V$, and C does not deliver to I.

Transshipment

The Transshipment Problem: Given m suppliers and n customers, Is it possible for the customers (suppliers) to have their orders filled?

- Each supplier has some amount of product.
- Each customer desires some amount of product.
- Not all suppliers deliver to each customer.

Example. Suppliers A, B, C have $300,100,100$ units of product. Customers I, II, III, IV, desire 200, 150, 100, 50 units of product. Neither A nor B delivers to $I V$, and C does not deliver to I.

Q: Is there a transshipment that satisfies all the suppliers?

Transshipment

Key: Convert the transshipment problem to a network flow problem.

Transshipment

Key: Convert the transshipment problem to a network flow problem.

- Start with G, with edges from suppliers x to customers y.

Transshipment

Key: Convert the transshipment problem to a network flow problem.

- Start with G, with edges from suppliers x to customers y.
- Create a network \widehat{G} by adding two vertices:

Transshipment

Key: Convert the transshipment problem to a network flow problem.

- Start with G, with edges from suppliers x to customers y.
- Create a network \widehat{G} by adding two vertices:
- A "super-source" s that is adjacent to every supplier x.
- A "super-sink" t that is adjacent from every customer y.

Transshipment

Key: Convert the transshipment problem to a network flow problem.

- Start with G, with edges from suppliers x to customers y.
- Create a network \widehat{G} by adding two vertices:
- A "super-source" s that is adjacent to every supplier x.
- A "super-sink" t that is adjacent from every customer y.
- Assign capacities to the edges as follows:

$$
\begin{cases}\text { if } e: s \rightarrow x \text {, set } & c_{e}=\text { supplier } x \text { 's supply } \\ \text { if } e: x \rightarrow y \text {, set } & c_{e}=\infty \\ \text { if } e: y \rightarrow t \text {, set } & c_{e}=\text { customer } y \text { 's demand }\end{cases}
$$

Transshipment

Key: Convert the transshipment problem to a network flow problem.

- Start with G, with edges from suppliers x to customers y.
- Create a network \widehat{G} by adding two vertices:
- A "super-source" s that is adjacent to every supplier x.
- A "super-sink" t that is adjacent from every customer y.
- Assign capacities to the edges as follows:

$$
\begin{cases}\text { if } e: s \rightarrow x \text {, set } & c_{e}=\text { supplier } x \text { 's supply } \\ \text { if } e: x \rightarrow y \text {, set } & c_{e}=\infty \\ \text { if } e: y \rightarrow t \text {, set } & c_{e}=\text { customer } y \text { 's demand }\end{cases}
$$

Transshipment

Important: a transshipment in $G \Longleftrightarrow$ a flow in \widehat{G}.

Transshipment

Important: a transshipment in $G \Longleftrightarrow$ a flow in \widehat{G}.
\therefore a maximum transshipment in $G \Longleftrightarrow$ a maximum flow in \widehat{G}.

Transshipment

Important: a transshipment in $G \Longleftrightarrow$ a flow in \widehat{G}.
\therefore a maximum transshipment in $G \Longleftrightarrow$ a maximum flow in \widehat{G}.
Run the Ford-Fulkerson algorithm. Interpret the min cut.

Transshipment

Important: a transshipment in $G \Longleftrightarrow$ a flow in \widehat{G}.
\therefore a maximum transshipment in $G \Longleftrightarrow$ a maximum flow in \widehat{G}.
Run the Ford-Fulkerson algorithm. Interpret the min cut.

- When all suppliers are satisfied in G, the min cut in \widehat{G} is \qquad .

Transshipment

Important: a transshipment in $G \Longleftrightarrow$ a flow in \widehat{G}.
\therefore a maximum transshipment in $G \Longleftrightarrow$ a maximum flow in \widehat{G}.
Run the Ford-Fulkerson algorithm. Interpret the min cut.

- When all suppliers are satisfied in G, the min cut in \widehat{G} is \qquad .
- Otherwise, the min cut tells the problem: there exists a set of suppliers whose customers demand less than the suppliers supply.

Transshipment

Important: a transshipment in $G \Longleftrightarrow$ a flow in \widehat{G}.
\therefore a maximum transshipment in $G \Longleftrightarrow$ a maximum flow in \widehat{G}.
Run the Ford-Fulkerson algorithm. Interpret the min cut.

- When all suppliers are satisfied in G, the \min cut in \widehat{G} is \qquad .
- Otherwise, the min cut tells the problem: there exists a set of suppliers whose customers demand less than the suppliers supply.

If you are customer-centric, orient the edges from right to left.
Gives a set of customers who can not be satisfied by their suppliers.

Transshipment Example

Supplier-centric:

(B) (A)

Problem:

Transshipment Example

Customer-centric:
(B) (A) (II)

Problem:

Dynamic Networks

- Ford-Fulkerson gives the max throughput of a static network.
- Use dynamic networks to model the act of sending shipments.

Dynamic Networks

- Ford-Fulkerson gives the max throughput of a static network.
- Use dynamic networks to model the act of sending shipments.

Definition: In a dynamic network, every edge e has both a capacity c_{e} and a travel time t_{e}.

Dynamic Networks

- Ford-Fulkerson gives the max throughput of a static network.
- Use dynamic networks to model the act of sending shipments.

Definition: In a dynamic network, every edge e has both a capacity c_{e} and a travel time t_{e}.
Example. Consider four cities with warehouses (a, b, c, and d) such that one truck per day can leave along any route, and the travel time for each route is given by:

Dynamic Networks

- Ford-Fulkerson gives the max throughput of a static network.
- Use dynamic networks to model the act of sending shipments.

Definition: In a dynamic network, every edge e has both a capacity c_{e} and a travel time t_{e}.
Example. Consider four cities with warehouses (a, b, c, and d) such that one truck per day can leave along any route, and the travel time for each route is given by:

We wish to determine the maximum number of shipments which can make it from city a on day 0 and arrive at city d by day 5 .

Dynamic Networks
 Create a new, static network.

Dynamic Networks

Create a new, static network.

- Create a vertex v_{i} for every warehouse v and every time i.

Dynamic Networks

Create a new, static network.

- Create a vertex v_{i} for every warehouse v and every time i.
- For all original edges $e: v \rightarrow w$ with capacity c_{e} and time t_{e}, create edges from $v_{i} \rightarrow w_{i+t_{e}}$ with capacity c_{e} for all i.

Dynamic Networks

Create a new, static network.

- Create a vertex v_{i} for every warehouse v and every time i.
- For all original edges $e: v \rightarrow w$ with capacity c_{e} and time t_{e}, create edges from $v_{i} \rightarrow w_{i+t_{e}}$ with capacity c_{e} for all i.
- For all v and i, create an edge from v_{i} to v_{i+1} with ∞ capacity. This represents shipping no product.

Dynamic Networks

Create a new, static network.

- Create a vertex v_{i} for every warehouse v and every time i.
- For all original edges $e: v \rightarrow w$ with capacity c_{e} and time t_{e}, create edges from $v_{i} \rightarrow w_{i+t_{e}}$ with capacity c_{e} for all i.
- For all v and i, create an edge from v_{i} to v_{i+1} with ∞ capacity. This represents shipping no product.
- Find the max flow from source(s) at time 0 to $\operatorname{sink}(\mathrm{s})$ at time n.

Dynamic Networks

Create a new, static network.

- Create a vertex v_{i} for every warehouse v and every time i.
- For all original edges $e: v \rightarrow w$ with capacity c_{e} and time t_{e}, create edges from $v_{i} \rightarrow w_{i+t_{e}}$ with capacity c_{e} for all i.
- For all v and i, create an edge from v_{i} to v_{i+1} with ∞ capacity. This represents shipping no product.
- Find the max flow from source(s) at time 0 to sink(s) at time n.

Example. In the graph below, calculate the max flow from a_{0} to d_{5}.

