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Directed Graphs

Definition: A directed graph (or digraph) is a graph G = (V ,E ),
where each edge e = vw is directed from one vertex to another:

e : v → w or e : w → v .
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Definition: A directed graph (or digraph) is a graph G = (V ,E ),
where each edge e = vw is directed from one vertex to another:

e : v → w or e : w → v .

Remark. The edge e : v → w is different from e′ : w → v and a
digraph including both is not considered to have multiple edges.

Definition: The in-degree of a vertex v is the
number of edges directed toward v .
Definition: The out-degree of a vertex v is the
number of edges directed away from v .

Definition: A source s is a vertex with in-degree 0.
Definition: A sink t is a vertex with out-degree 0.

Important. Any path or cycle in a digraph
must respect the direction on each edge.
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Idea. Graph networks represent real-world networks such as traffic,
water, communication, etc.

Goal: Send as much “stuff” from s to t while respecting capacities.
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Network Flows

Definition: Given a network G , a flow ~ϕ = {ϕe}e∈E(G) on G is an
assignment of values ϕe to every edge of G satisfying:
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Definition: When ϕe = ce , we say that e is saturated, or at capacity.
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Maximum Flow

Theorem. Given a flow ~ϕ on a network G , the net flow out of s is

equal to the net flow into t. Symbolically,
∑
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Theorem. Given a flow ~ϕ on a network G , the net flow out of s is
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∑

e out of s

ϕe =
∑

e into t

ϕe .

Proof. Create a new network G ′ by adding to G an edge
e∞ : t → s with infinite capacity, and place flow

ϕ∞ =
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e out of s

ϕe

on e∞.
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Maximum Flow

Theorem. Given a flow ~ϕ on a network G , the net flow out of s is

equal to the net flow into t. Symbolically,
∑

e out of s

ϕe =
∑

e into t

ϕe .

Proof. Create a new network G ′ by adding to G an edge
e∞ : t → s with infinite capacity, and place flow

ϕ∞ =
∑

e out of s

ϕe

on e∞.

In G ′, flow is now conserved at every vertex except possibly t.
By Kirchhoff’s Global Current Law (Theorem 6.2.2),
flow must be conserved at t as well.
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Maximum Flow

Definition: The throughput or value

of a flow ~ϕ is
∑

e out of s

ϕe , denoted |~ϕ|.

Idea: The throughput is the amount
of “stuff” flowing through G .
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flow with the largest throughput.
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In our example, |~ϕ| = .

Goal: For a given network, find the
flow with the largest throughput.

This problem is called maximum flow.

MAX FLOW maximize
over all flows ~ϕ on G

|~ϕ|
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A related problem in network theory has to do with st-cuts.

Definition: Let G be a network. Let X be a set of vertices
containing s and not containing t. An st-cut [X ,X c ] is the set of

edges between a vertex in X and a vertex in X c (in either direction).
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X =
X c =
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∣

∣[X ,X c ]
∣

∣ =

Definition: The capacity of an st-cut, denoted
∣

∣[X ,X c ]
∣

∣ is the sum
of the capacities of the edges from a vertex in X to a vertex in X c .

Idea: The capacity of a cut is a limit for how much “stuff” can go
from X to X c .

⋆ Do not subtract the capacities of the edges going the other way. ⋆
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Max Flow / Min Cut

Goal: For a given network, find the st-cut with the smallest capacity.

This problem is called minimum cut.

MIN CUT minimize
over all cuts [X ,X c ] on G

|[X ,X c ]|

The problems Max Flow and Min Cut are related because for any
flow ~ϕ, the net flow through the edges of any st-cut [X ,X c ] is at
most the capacity of [X ,X c ]. This proves:

Theorem. For any flow ~ϕ and st-cut [X ,X c ], |~ϕ| ≤ |[X ,X c ]|.

Theorem. For any maximum flow ~ϕ∗ and minimum st-cut [X ∗,X ∗c ],

|~ϕ∗| ≤ |[X ∗,X ∗c ]|.

So, if there exists a flow ~ϕ and st-cut [X ∗,X ∗c ] where equality
holds, then ~ϕ is a maximum flow and [X ∗,X ∗c ] is a minimum cut
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We can augment in the forward direction when .
We can augment in the backward direction when .

We’ll create a companion graph to keep track of augmenting paths.
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1 Start with any flow ~ϕ on G .
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Max Flow / Min Cut Theorem

Theorem. (Ford, Fulkerson, 1955) In any network G , the value of
any maximum flow is equal to the capacity of any minimum cut.

Proof. Use the Ford–Fulkerson Algorithm, which finds a max flow.

1 Start with any flow ~ϕ on G .

2 Draw the flow companion graph using the underlying graph

◮ If ϕe = 0, orient the edge e forward only.
◮ If 0 < ϕe < ce , orient the edge e both forward and backward.
◮ ϕe = ce , orient the edge e backward only.

3 ⋆ If there is an st-path in the flow companion graph, send as
many units of flow as possible through this path. Repeat Step 2.
⋆ If there is no st-path in the flow companion graph, STOP.
→ Upon STOP, the current flow is a maximum flow. ←
In addition, let X be the set of vertices reachable from s in
the flow companion graph. Then [X ,X c ] is a minimum st-cut.
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Correctness of the Ford–Fulkerson Algorithm

Claim. The Ford–Fulkerson Algorithm gives a maximum flow.
Proof. We must show that the algorithm always stops, and that
when it stops, the output is indeed a maximum flow.

⋆ We will consider the case of integer capacities.

The algorithm terminates.

◮ Each iteration increases the throughput of the flow by an integer.

◮ The sum of the capacities on the edges out of s is finite.

The output is a maximum flow. Upon termination:

◮ There are no flow augmenting paths in the companion graph, so:

◮ Edges from X to X c are full and edges from X c to X are empty.

◮ The capacity of [X ,X c ] equals the throughput of the flow.

Conclusion. The flow is a max flow and the st-cut is a min cut.
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Closing Remarks

◮ When using the algorithm, it is important to increase the flow
by as much as possible at each step.

◮ When the capacities are integers, we always increase the
throughput by integers. The algorithm does work when the
capacities are not integers, but the proof is more involved.

◮ As presented here, this algorithm may be very slow.
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