
Network Flow 117

Directed Graphs

Definition: A directed graph (or digraph) is a graph G = (V ,E),
where each edge e = vw is directed from one vertex to another:

e : v → w or e : w → v .

e1 e2

e3

e5

e4

e6

e7

a

b c

d

e

Network Flow 117

Directed Graphs

Definition: A directed graph (or digraph) is a graph G = (V ,E),
where each edge e = vw is directed from one vertex to another:

e : v → w or e : w → v .

Remark. The edge e : v → w is different from e′ : w → v and a
digraph including both is not considered to have multiple edges.

e1 e2

e3

e5

e4

e6

e7

a

b c

d

e

Network Flow 117

Directed Graphs

Definition: A directed graph (or digraph) is a graph G = (V ,E),
where each edge e = vw is directed from one vertex to another:

e : v → w or e : w → v .

Remark. The edge e : v → w is different from e′ : w → v and a
digraph including both is not considered to have multiple edges.

Definition: The in-degree of a vertex v is the
number of edges directed toward v .
Definition: The out-degree of a vertex v is the
number of edges directed away from v .

e1 e2

e3

e5

e4

e6

e7

a

b c

d

e

Network Flow 117

Directed Graphs

Definition: A directed graph (or digraph) is a graph G = (V ,E),
where each edge e = vw is directed from one vertex to another:

e : v → w or e : w → v .

Remark. The edge e : v → w is different from e′ : w → v and a
digraph including both is not considered to have multiple edges.

Definition: The in-degree of a vertex v is the
number of edges directed toward v .
Definition: The out-degree of a vertex v is the
number of edges directed away from v .

Definition: A source s is a vertex with in-degree 0.
Definition: A sink t is a vertex with out-degree 0.

e1 e2

e3

e5

e4

e6

e7

a

b c

d

e

Network Flow 117

Directed Graphs

Definition: A directed graph (or digraph) is a graph G = (V ,E),
where each edge e = vw is directed from one vertex to another:

e : v → w or e : w → v .

Remark. The edge e : v → w is different from e′ : w → v and a
digraph including both is not considered to have multiple edges.

Definition: The in-degree of a vertex v is the
number of edges directed toward v .
Definition: The out-degree of a vertex v is the
number of edges directed away from v .

Definition: A source s is a vertex with in-degree 0.
Definition: A sink t is a vertex with out-degree 0.

Important. Any path or cycle in a digraph
must respect the direction on each edge.

e1 e2

e3

e5

e4

e6

e7

a

b c

d

e

Network Flow 118

Network Flows

Definition: A network is a directed graph with additional structure:

Network Flow 118

Network Flows

Definition: A network is a directed graph with additional structure:

◮ There are two distinguished vertices, s (a source) and t (a sink).

◮ Each edge e has a capacity ce . [Some sort of limit on flow.]

Network Flow 118

Network Flows

Definition: A network is a directed graph with additional structure:

◮ There are two distinguished vertices, s (a source) and t (a sink).

◮ Each edge e has a capacity ce . [Some sort of limit on flow.]

e1

e2

e3

e4

e5

e7

e6 e8

s

a

b

c

d

t

c1=2

c2=3

c3=4

c4=1

c5=3

c7=3

c6=2 c8=4

s

a

b

c

d

t

Network Flow 118

Network Flows

Definition: A network is a directed graph with additional structure:

◮ There are two distinguished vertices, s (a source) and t (a sink).

◮ Each edge e has a capacity ce . [Some sort of limit on flow.]

e1

e2

e3

e4

e5

e7

e6 e8

s

a

b

c

d

t

c1=2

c2=3

c3=4

c4=1

c5=3

c7=3

c6=2 c8=4

s

a

b

c

d

t

Idea. Graph networks represent real-world networks such as traffic,
water, communication, etc.

Goal: Send as much “stuff” from s to t while respecting capacities.

Network Flow 119

Network Flows

Definition: Given a network G , a flow ~ϕ = {ϕe}e∈E(G) on G is an
assignment of values ϕe to every edge of G satisfying:

Network Flow 119

Network Flows

Definition: Given a network G , a flow ~ϕ = {ϕe}e∈E(G) on G is an
assignment of values ϕe to every edge of G satisfying:

◮ 0 ≤ ϕe ≤ ce for every edge e ∈ E (G).

◮ The flow respects the capacities.

Network Flow 119

Network Flows

Definition: Given a network G , a flow ~ϕ = {ϕe}e∈E(G) on G is an
assignment of values ϕe to every edge of G satisfying:

◮ 0 ≤ ϕe ≤ ce for every edge e ∈ E (G).

◮ The flow respects the capacities.

◮

∑

e into v

ϕe =
∑

e out of v

ϕe for every vertex v ∈ V (G) except s or t.

◮ Obeys “conservation of flow” except at s and t.

Network Flow 119

Network Flows

Definition: Given a network G , a flow ~ϕ = {ϕe}e∈E(G) on G is an
assignment of values ϕe to every edge of G satisfying:

◮ 0 ≤ ϕe ≤ ce for every edge e ∈ E (G).

◮ The flow respects the capacities.

◮

∑

e into v

ϕe =
∑

e out of v

ϕe for every vertex v ∈ V (G) except s or t.

◮ Obeys “conservation of flow” except at s and t.

c1=2

c2=3

c3=4

c4=1

c5=3

c7=3

c6=2 c8=4

s

a

b

c

d

t

j1=1

j2=3

j3=2

j4=0

j5=3

j7=2

j6=1 j8=2

s

a

b

c

d

t

Definition: When ϕe = ce , we say that e is saturated, or at capacity.

Network Flow 120

Maximum Flow

Theorem. Given a flow ~ϕ on a network G , the net flow out of s is

equal to the net flow into t. Symbolically,
∑

e out of s

ϕe =
∑

e into t

ϕe .

Network Flow 120

Maximum Flow

Theorem. Given a flow ~ϕ on a network G , the net flow out of s is

equal to the net flow into t. Symbolically,
∑

e out of s

ϕe =
∑

e into t

ϕe .

Proof. Create a new network G ′ by adding to G an edge
e∞ : t → s with infinite capacity, and place flow

ϕ∞ =
∑

e out of s

ϕe

on e∞.

Network Flow 120

Maximum Flow

Theorem. Given a flow ~ϕ on a network G , the net flow out of s is

equal to the net flow into t. Symbolically,
∑

e out of s

ϕe =
∑

e into t

ϕe .

Proof. Create a new network G ′ by adding to G an edge
e∞ : t → s with infinite capacity, and place flow

ϕ∞ =
∑

e out of s

ϕe

on e∞.

In G ′, flow is now conserved at every vertex except possibly t.
By Kirchhoff’s Global Current Law (Theorem 6.2.2),
flow must be conserved at t as well.

Network Flow 121

Maximum Flow

Definition: The throughput or value

of a flow ~ϕ is
∑

e out of s

ϕe , denoted |~ϕ|.

Idea: The throughput is the amount
of “stuff” flowing through G .

j1=1

j2=3

j3=2

j4=0

j5=3

j7=2

j6=1 j8=2

s

a

b

c

d

t

c1=2

c2=3

c3=4

c4=1

c5=3

c7=3

c6=2 c8=4

s

a

b

c

d

t

In our example, |~ϕ| = .

Network Flow 121

Maximum Flow

Definition: The throughput or value

of a flow ~ϕ is
∑

e out of s

ϕe , denoted |~ϕ|.

Idea: The throughput is the amount
of “stuff” flowing through G .

j1=1

j2=3

j3=2

j4=0

j5=3

j7=2

j6=1 j8=2

s

a

b

c

d

t

c1=2

c2=3

c3=4

c4=1

c5=3

c7=3

c6=2 c8=4

s

a

b

c

d

t

In our example, |~ϕ| = .

Goal: For a given network, find the
flow with the largest throughput.

This problem is called maximum flow.

Network Flow 121

Maximum Flow

Definition: The throughput or value

of a flow ~ϕ is
∑

e out of s

ϕe , denoted |~ϕ|.

Idea: The throughput is the amount
of “stuff” flowing through G .

j1=1

j2=3

j3=2

j4=0

j5=3

j7=2

j6=1 j8=2

s

a

b

c

d

t

c1=2

c2=3

c3=4

c4=1

c5=3

c7=3

c6=2 c8=4

s

a

b

c

d

t

In our example, |~ϕ| = .

Goal: For a given network, find the
flow with the largest throughput.

This problem is called maximum flow.

MAX FLOW maximize
over all flows ~ϕ on G

|~ϕ|

Network Flow 122

st-Cuts

A related problem in network theory has to do with st-cuts.

Network Flow 122

st-Cuts

A related problem in network theory has to do with st-cuts.

Definition: Let G be a network. Let X be a set of vertices
containing s and not containing t. An st-cut [X ,X c] is the set of

edges between a vertex in X and a vertex in X c (in either direction).

c1=2

c2=3

c3=4

c4=1

c5=3

c7=3

c6=2 c8=4

s

a

b

c

d

t

X =
X c =
[X ,X c] =
∣

∣[X ,X c]
∣

∣ =

Network Flow 122

st-Cuts

A related problem in network theory has to do with st-cuts.

Definition: Let G be a network. Let X be a set of vertices
containing s and not containing t. An st-cut [X ,X c] is the set of

edges between a vertex in X and a vertex in X c (in either direction).

c1=2

c2=3

c3=4

c4=1

c5=3

c7=3

c6=2 c8=4

s

a

b

c

d

t

X =
X c =
[X ,X c] =
∣

∣[X ,X c]
∣

∣ =

Definition: The capacity of an st-cut, denoted
∣

∣[X ,X c]
∣

∣ is the sum
of the capacities of the edges from a vertex in X to a vertex in X c .

Network Flow 122

st-Cuts

A related problem in network theory has to do with st-cuts.

Definition: Let G be a network. Let X be a set of vertices
containing s and not containing t. An st-cut [X ,X c] is the set of

edges between a vertex in X and a vertex in X c (in either direction).

c1=2

c2=3

c3=4

c4=1

c5=3

c7=3

c6=2 c8=4

s

a

b

c

d

t

X =
X c =
[X ,X c] =
∣

∣[X ,X c]
∣

∣ =

Definition: The capacity of an st-cut, denoted
∣

∣[X ,X c]
∣

∣ is the sum
of the capacities of the edges from a vertex in X to a vertex in X c .

Idea: The capacity of a cut is a limit for how much “stuff” can go
from X to X c .

Network Flow 122

st-Cuts

A related problem in network theory has to do with st-cuts.

Definition: Let G be a network. Let X be a set of vertices
containing s and not containing t. An st-cut [X ,X c] is the set of

edges between a vertex in X and a vertex in X c (in either direction).

c1=2

c2=3

c3=4

c4=1

c5=3

c7=3

c6=2 c8=4

s

a

b

c

d

t

X =
X c =
[X ,X c] =
∣

∣[X ,X c]
∣

∣ =

Definition: The capacity of an st-cut, denoted
∣

∣[X ,X c]
∣

∣ is the sum
of the capacities of the edges from a vertex in X to a vertex in X c .

Idea: The capacity of a cut is a limit for how much “stuff” can go
from X to X c .

⋆ Do not subtract the capacities of the edges going the other way. ⋆

Network Flow 123

Max Flow / Min Cut

Goal: For a given network, find the st-cut with the smallest capacity.

This problem is called minimum cut.

Network Flow 123

Max Flow / Min Cut

Goal: For a given network, find the st-cut with the smallest capacity.

This problem is called minimum cut.

MIN CUT minimize
over all cuts [X ,X c] on G

|[X ,X c]|

The problems Max Flow and Min Cut are related because for any
flow ~ϕ, the net flow through the edges of any st-cut [X ,X c] is at
most the capacity of [X ,X c]. This proves:

Network Flow 123

Max Flow / Min Cut

Goal: For a given network, find the st-cut with the smallest capacity.

This problem is called minimum cut.

MIN CUT minimize
over all cuts [X ,X c] on G

|[X ,X c]|

The problems Max Flow and Min Cut are related because for any
flow ~ϕ, the net flow through the edges of any st-cut [X ,X c] is at
most the capacity of [X ,X c]. This proves:

Theorem. For any flow ~ϕ and st-cut [X ,X c], |~ϕ| ≤ |[X ,X c]|.

Network Flow 123

Max Flow / Min Cut

Goal: For a given network, find the st-cut with the smallest capacity.

This problem is called minimum cut.

MIN CUT minimize
over all cuts [X ,X c] on G

|[X ,X c]|

The problems Max Flow and Min Cut are related because for any
flow ~ϕ, the net flow through the edges of any st-cut [X ,X c] is at
most the capacity of [X ,X c]. This proves:

Theorem. For any flow ~ϕ and st-cut [X ,X c], |~ϕ| ≤ |[X ,X c]|.

Theorem. For any maximum flow ~ϕ∗ and minimum st-cut [X ∗,X ∗c],

|~ϕ∗| ≤ |[X ∗,X ∗c]|.

Network Flow 123

Max Flow / Min Cut

Goal: For a given network, find the st-cut with the smallest capacity.

This problem is called minimum cut.

MIN CUT minimize
over all cuts [X ,X c] on G

|[X ,X c]|

The problems Max Flow and Min Cut are related because for any
flow ~ϕ, the net flow through the edges of any st-cut [X ,X c] is at
most the capacity of [X ,X c]. This proves:

Theorem. For any flow ~ϕ and st-cut [X ,X c], |~ϕ| ≤ |[X ,X c]|.

Theorem. For any maximum flow ~ϕ∗ and minimum st-cut [X ∗,X ∗c],

|~ϕ∗| ≤ |[X ∗,X ∗c]|.

So, if there exists a flow ~ϕ and st-cut [X ∗,X ∗c] where equality
holds, then ~ϕ is a maximum flow and [X ∗,X ∗c] is a minimum cut

Network Flow 124

Max Flow / Min Cut Theorem

Theorem. (Ford, Fulkerson, 1955) In any network G , the value of
any maximum flow is equal to the capacity of any minimum cut.

Network Flow 124

Max Flow / Min Cut Theorem

Theorem. (Ford, Fulkerson, 1955) In any network G , the value of
any maximum flow is equal to the capacity of any minimum cut.

Proof. Use the Ford–Fulkerson Algorithm to find a max flow.

Network Flow 124

Max Flow / Min Cut Theorem

Theorem. (Ford, Fulkerson, 1955) In any network G , the value of
any maximum flow is equal to the capacity of any minimum cut.

Proof. Use the Ford–Fulkerson Algorithm to find a max flow.

Idea: Similar to the Hungarian Algorithm for finding a max matching,
we will augment an existing flow ~ϕ.

Network Flow 124

Max Flow / Min Cut Theorem

Theorem. (Ford, Fulkerson, 1955) In any network G , the value of
any maximum flow is equal to the capacity of any minimum cut.

Proof. Use the Ford–Fulkerson Algorithm to find a max flow.

Idea: Similar to the Hungarian Algorithm for finding a max matching,
we will augment an existing flow ~ϕ.

Question. What does it look like to augment a flow?

H1L
c1=2

H3L
c2=3

H2L
c3=4

H0L
c4=1

H3L
c5=3

H2L
c7=3

H1L
c6=2

H2L
c8=4

s

a

b

c

d

t

H1L
c1=2

H3L
c2=3

H2L
c3=4

H0L
c4=1

H3L
c5=3

H2L
c7=3

H1L
c6=2

H2L
c8=4

s

a

b

c

d

t

Network Flow 124

Max Flow / Min Cut Theorem

Theorem. (Ford, Fulkerson, 1955) In any network G , the value of
any maximum flow is equal to the capacity of any minimum cut.

Proof. Use the Ford–Fulkerson Algorithm to find a max flow.

Idea: Similar to the Hungarian Algorithm for finding a max matching,
we will augment an existing flow ~ϕ.

Question. What does it look like to augment a flow?

H1L
c1=2

H3L
c2=3

H2L
c3=4

H0L
c4=1

H3L
c5=3

H2L
c7=3

H1L
c6=2

H2L
c8=4

s

a

b

c

d

t

H1L
c1=2

H3L
c2=3

H2L
c3=4

H0L
c4=1

H3L
c5=3

H2L
c7=3

H1L
c6=2

H2L
c8=4

s

a

b

c

d

t

We can augment in the forward direction when .
We can augment in the backward direction when .

Network Flow 124

Max Flow / Min Cut Theorem

Theorem. (Ford, Fulkerson, 1955) In any network G , the value of
any maximum flow is equal to the capacity of any minimum cut.

Proof. Use the Ford–Fulkerson Algorithm to find a max flow.

Idea: Similar to the Hungarian Algorithm for finding a max matching,
we will augment an existing flow ~ϕ.

Question. What does it look like to augment a flow?

H1L
c1=2

H3L
c2=3

H2L
c3=4

H0L
c4=1

H3L
c5=3

H2L
c7=3

H1L
c6=2

H2L
c8=4

s

a

b

c

d

t

H1L
c1=2

H3L
c2=3

H2L
c3=4

H0L
c4=1

H3L
c5=3

H2L
c7=3

H1L
c6=2

H2L
c8=4

s

a

b

c

d

t

We can augment in the forward direction when .
We can augment in the backward direction when .

We’ll create a companion graph to keep track of augmenting paths.

Network Flow 125

Max Flow / Min Cut Theorem

Theorem. (Ford, Fulkerson, 1955) In any network G , the value of
any maximum flow is equal to the capacity of any minimum cut.

Proof. Use the Ford–Fulkerson Algorithm, which finds a max flow.

1 Start with any flow ~ϕ on G .

Network Flow 125

Max Flow / Min Cut Theorem

Theorem. (Ford, Fulkerson, 1955) In any network G , the value of
any maximum flow is equal to the capacity of any minimum cut.

Proof. Use the Ford–Fulkerson Algorithm, which finds a max flow.

1 Start with any flow ~ϕ on G .

2 Draw the flow companion graph using the underlying graph

◮ If ϕe = 0, orient the edge e forward only.
◮ If 0 < ϕe < ce , orient the edge e both forward and backward.
◮ ϕe = ce , orient the edge e backward only.

Network Flow 125

Max Flow / Min Cut Theorem

Theorem. (Ford, Fulkerson, 1955) In any network G , the value of
any maximum flow is equal to the capacity of any minimum cut.

Proof. Use the Ford–Fulkerson Algorithm, which finds a max flow.

1 Start with any flow ~ϕ on G .

2 Draw the flow companion graph using the underlying graph

◮ If ϕe = 0, orient the edge e forward only.
◮ If 0 < ϕe < ce , orient the edge e both forward and backward.
◮ ϕe = ce , orient the edge e backward only.

3 ⋆ If there is an st-path in the flow companion graph, send as
many units of flow as possible through this path. Repeat Step 2.

Network Flow 125

Max Flow / Min Cut Theorem

Theorem. (Ford, Fulkerson, 1955) In any network G , the value of
any maximum flow is equal to the capacity of any minimum cut.

Proof. Use the Ford–Fulkerson Algorithm, which finds a max flow.

1 Start with any flow ~ϕ on G .

2 Draw the flow companion graph using the underlying graph

◮ If ϕe = 0, orient the edge e forward only.
◮ If 0 < ϕe < ce , orient the edge e both forward and backward.
◮ ϕe = ce , orient the edge e backward only.

3 ⋆ If there is an st-path in the flow companion graph, send as
many units of flow as possible through this path. Repeat Step 2.
⋆ If there is no st-path in the flow companion graph, STOP.

Network Flow 125

Max Flow / Min Cut Theorem

Theorem. (Ford, Fulkerson, 1955) In any network G , the value of
any maximum flow is equal to the capacity of any minimum cut.

Proof. Use the Ford–Fulkerson Algorithm, which finds a max flow.

1 Start with any flow ~ϕ on G .

2 Draw the flow companion graph using the underlying graph

◮ If ϕe = 0, orient the edge e forward only.
◮ If 0 < ϕe < ce , orient the edge e both forward and backward.
◮ ϕe = ce , orient the edge e backward only.

3 ⋆ If there is an st-path in the flow companion graph, send as
many units of flow as possible through this path. Repeat Step 2.
⋆ If there is no st-path in the flow companion graph, STOP.
→ Upon STOP, the current flow is a maximum flow. ←
In addition, let X be the set of vertices reachable from s in
the flow companion graph. Then [X ,X c] is a minimum st-cut.

Network Flow 126

A Ford–Fulkerson Algorithm Example
c1=1

c2=2

c3=10

c4=4

c6=2

c7=7

c8=1

c9=2

c5=2

c10=4

c11=5

c15=11

c12=2

c13=2

c16=2

c14=5 c17=1

s

a

b

c

d

e

f

t

Network Flow 126

A Ford–Fulkerson Algorithm Example
c1=1

c2=2

c3=10

c4=4

c6=2

c7=7

c8=1

c9=2

c5=2

c10=4

c11=5

c15=11

c12=2

c13=2

c16=2

c14=5 c17=1

s

a

b

c

d

e

f

t

1
1

2
2

2
10

0
4

1
2

2
7 0

10
20

2 2
4 0

5

3
110

2

0
2

2
2

0
5

0
1

s

a

b

c

d

e

f

t

Network Flow 126

A Ford–Fulkerson Algorithm Example
c1=1

c2=2

c3=10

c4=4

c6=2

c7=7

c8=1

c9=2

c5=2

c10=4

c11=5

c15=11

c12=2

c13=2

c16=2

c14=5 c17=1

s

a

b

c

d

e

f

t

1
1

2
2

2
10

0
4

1
2

2
7 0

10
20

2 2
4 0

5

3
110

2

0
2

2
2

0
5

0
1

s

a

b

c

d

e

f

t s

a

b

c

d

e

f

t

s → c → b →

d → t : 2 units
s → c → f →

e → d → t : 2 units

Network Flow 126

A Ford–Fulkerson Algorithm Example
c1=1

c2=2

c3=10

c4=4

c6=2

c7=7

c8=1

c9=2

c5=2

c10=4

c11=5

c15=11

c12=2

c13=2

c16=2

c14=5 c17=1

s

a

b

c

d

e

f

t

1
1

2
2

2
10

0
4

1
2

2
7 0

10
20

2 2
4 0

5

3
110

2

0
2

2
2

0
5

0
1

s

a

b

c

d

e

f

t s

a

b

c

d

e

f

t

s → c → b →

d → t : 2 units
s → c → f →

e → d → t : 2 units

1
1

2
2

6
10

0
4

1
2

4
7 0

10
22

2 2
4 2

5

7
110

2

2
2

2
2

2
5

0
1

s

a

b

c

d

e

f

t

Network Flow 126

A Ford–Fulkerson Algorithm Example
c1=1

c2=2

c3=10

c4=4

c6=2

c7=7

c8=1

c9=2

c5=2

c10=4

c11=5

c15=11

c12=2

c13=2

c16=2

c14=5 c17=1

s

a

b

c

d

e

f

t

1
1

2
2

2
10

0
4

1
2

2
7 0

10
20

2 2
4 0

5

3
110

2

0
2

2
2

0
5

0
1

s

a

b

c

d

e

f

t s

a

b

c

d

e

f

t

s → c → b →

d → t : 2 units
s → c → f →

e → d → t : 2 units

1
1

2
2

6
10

0
4

1
2

4
7 0

10
22

2 2
4 2

5

7
110

2

2
2

2
2

2
5

0
1

s

a

b

c

d

e

f

t s

a

b

c

d

e

f

t

Network Flow 127

A Ford–Fulkerson Algorithm Example
s → c → f → t : 1 unit

s → c → e →

a → d → t : 2 units

1
1

2
2

8
10

0
4

2
2

4
7 0

10
22

2 3
4 3

5

8
111

2

2
2

2
2

2
5

1
1

s

a

b

c

d

e

f

t

Network Flow 127

A Ford–Fulkerson Algorithm Example
s → c → f → t : 1 unit

s → c → e →

a → d → t : 2 units

1
1

2
2

8
10

0
4

2
2

4
7 0

10
22

2 3
4 3

5

8
111

2

2
2

2
2

2
5

1
1

s

a

b

c

d

e

f

t s

a

b

c

d

e

f

t

Network Flow 127

A Ford–Fulkerson Algorithm Example
s → c → f → t : 1 unit

s → c → e →

a → d → t : 2 units

1
1

2
2

8
10

0
4

2
2

4
7 0

10
22

2 3
4 3

5

8
111

2

2
2

2
2

2
5

1
1

s

a

b

c

d

e

f

t s

a

b

c

d

e

f

t

1
1

2
2

8
10

0
4

2
2

4
7 0

10
22

2 3
4 3

5

8
111

2

2
2

2
2

2
5

1
1

s

a

b

c

d

e

f

t

Network Flow 127

A Ford–Fulkerson Algorithm Example
s → c → f → t : 1 unit

s → c → e →

a → d → t : 2 units

1
1

2
2

8
10

0
4

2
2

4
7 0

10
22

2 3
4 3

5

8
111

2

2
2

2
2

2
5

1
1

s

a

b

c

d

e

f

t s

a

b

c

d

e

f

t

1
1

2
2

8
10

0
4

2
2

4
7 0

10
22

2 3
4 3

5

8
111

2

2
2

2
2

2
5

1
1

s

a

b

c

d

e

f

t

c1=1

c2=2

c3=10

c4=4

c6=2

c7=7

c8=1

c9=2

c5=2

c10=4

c11=5

c15=11

c12=2

c13=2

c16=2

c14=5 c17=1

s

a

b

c

d

e

f

t

X = { }, [X ,X c] = { }, and
∣

∣[X ,X c]
∣

∣ = .

Network Flow 128

Correctness of the Ford–Fulkerson Algorithm

Claim. The Ford–Fulkerson Algorithm gives a maximum flow.

Network Flow 128

Correctness of the Ford–Fulkerson Algorithm

Claim. The Ford–Fulkerson Algorithm gives a maximum flow.
Proof. We must show that the algorithm always stops, and that
when it stops, the output is indeed a maximum flow.

Network Flow 128

Correctness of the Ford–Fulkerson Algorithm

Claim. The Ford–Fulkerson Algorithm gives a maximum flow.
Proof. We must show that the algorithm always stops, and that
when it stops, the output is indeed a maximum flow.

⋆ We will consider the case of integer capacities.

Network Flow 128

Correctness of the Ford–Fulkerson Algorithm

Claim. The Ford–Fulkerson Algorithm gives a maximum flow.
Proof. We must show that the algorithm always stops, and that
when it stops, the output is indeed a maximum flow.

⋆ We will consider the case of integer capacities.

The algorithm terminates.

◮ Each iteration increases the throughput of the flow by an integer.

◮ The sum of the capacities on the edges out of s is finite.

Network Flow 128

Correctness of the Ford–Fulkerson Algorithm

Claim. The Ford–Fulkerson Algorithm gives a maximum flow.
Proof. We must show that the algorithm always stops, and that
when it stops, the output is indeed a maximum flow.

⋆ We will consider the case of integer capacities.

The algorithm terminates.

◮ Each iteration increases the throughput of the flow by an integer.

◮ The sum of the capacities on the edges out of s is finite.

The output is a maximum flow. Upon termination:

◮ There are no flow augmenting paths in the companion graph

Network Flow 128

Correctness of the Ford–Fulkerson Algorithm

Claim. The Ford–Fulkerson Algorithm gives a maximum flow.
Proof. We must show that the algorithm always stops, and that
when it stops, the output is indeed a maximum flow.

⋆ We will consider the case of integer capacities.

The algorithm terminates.

◮ Each iteration increases the throughput of the flow by an integer.

◮ The sum of the capacities on the edges out of s is finite.

The output is a maximum flow. Upon termination:

◮ There are no flow augmenting paths in the companion graph, so:

◮ Edges from X to X c are full and edges from X c to X are empty.

Network Flow 128

Correctness of the Ford–Fulkerson Algorithm

Claim. The Ford–Fulkerson Algorithm gives a maximum flow.
Proof. We must show that the algorithm always stops, and that
when it stops, the output is indeed a maximum flow.

⋆ We will consider the case of integer capacities.

The algorithm terminates.

◮ Each iteration increases the throughput of the flow by an integer.

◮ The sum of the capacities on the edges out of s is finite.

The output is a maximum flow. Upon termination:

◮ There are no flow augmenting paths in the companion graph, so:

◮ Edges from X to X c are full and edges from X c to X are empty.

◮ The capacity of [X ,X c] equals the throughput of the flow.

Network Flow 128

Correctness of the Ford–Fulkerson Algorithm

Claim. The Ford–Fulkerson Algorithm gives a maximum flow.
Proof. We must show that the algorithm always stops, and that
when it stops, the output is indeed a maximum flow.

⋆ We will consider the case of integer capacities.

The algorithm terminates.

◮ Each iteration increases the throughput of the flow by an integer.

◮ The sum of the capacities on the edges out of s is finite.

The output is a maximum flow. Upon termination:

◮ There are no flow augmenting paths in the companion graph, so:

◮ Edges from X to X c are full and edges from X c to X are empty.

◮ The capacity of [X ,X c] equals the throughput of the flow.

Conclusion. The flow is a max flow and the st-cut is a min cut.

Network Flow 129

Closing Remarks

◮ When using the algorithm, it is important to increase the flow
by as much as possible at each step.

Network Flow 129

Closing Remarks

◮ When using the algorithm, it is important to increase the flow
by as much as possible at each step.

◮ When the capacities are integers, we always increase the
throughput by integers. The algorithm does work when the
capacities are not integers, but the proof is more involved.

Network Flow 129

Closing Remarks

◮ When using the algorithm, it is important to increase the flow
by as much as possible at each step.

◮ When the capacities are integers, we always increase the
throughput by integers. The algorithm does work when the
capacities are not integers, but the proof is more involved.

◮ As presented here, this algorithm may be very slow.

c1=100

c2=100

c3=1

c4=100

c5=100

s

a

b

t

	Network Flow

