Knight's Tours

In chess, a knight (0) is a piece that moves in an " L ": two spaces over and one space to the side.

Question Is it possible for a knight to start on some square and, by a series of valid knight moves, visit each square on an 8×8 chessboard once? (How about return to where it started?)

Knight's Tours

In chess, a knight (0) is a piece that moves in an " L ": two spaces over and one space to the side.

Question Is it possible for a knight to start on some square and, by a series of valid knight moves, visit each square on an 8×8 chessboard once? (How about return to where it started?)

Definition: A path of the first kind is called an open knight's tour. A cycle of the second kind is called a closed knight's tour.

8×8 Knight's Tour

Source: http://www.ktn.freeuk.com/ga.htm

8×8 Knight's Tour

Source: http://www.ktn.freeuk.com/ga.htm
Question: Are there any knight's tours on an $m \times n$ chessboard?

The Graph Theory of Knight's Tours

For any board we can draw a corresponding knight move graph: Create a vertex for every square on the board and create edges between vertices that are a knight's move away.

An open/closed knight's tour on the board

A knight move always alternates between white and black squares. Therefore, a knight move graph is always \qquad .

Question Are there any knight's tours on an $m \times n$ chessboard?

Knight's Tour Theorem

Theorem An $m \times n$ chessboard with $m \leq n$ has a closed knight's tour unless one or more of these conditions holds:
$1 m$ and n are both odd.
$2 m=1,2$, or 4 .
$3 m=3$ and $n=4,6$, or 8 .

Knight's Tour Theorem

Theorem An $m \times n$ chessboard with $m \leq n$ has a closed knight's tour unless one or more of these conditions holds:
$1 m$ and n are both odd.
$2 m=1,2$, or 4 .
$3 m=3$ and $n=4,6$, or 8 .
"Proof" We will only show that it is impossible in these cases.
Case 1. When m and n are both odd,

Knight's Tour Theorem

Theorem An $m \times n$ chessboard with $m \leq n$ has a closed knight's tour unless one or more of these conditions holds:
$1 m$ and n are both odd.
$2 m=1,2$, or 4 .
3 $m=3$ and $n=4,6$, or 8 .
"Proof" We will only show that it is impossible in these cases.
Case 1. When m and n are both odd,

Case 2. When $m=1$ or 2 , the knight move graph is not connected.

Knight's Tour Theorem

Case 2. When $m=4$, draw the knight move graph G.

0	0	0	Q	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Suppose there exists a Hamiltonian cycle C in the graph G. Since G is bipartite, C alternates between white and black vertices.

Knight's Tour Theorem

Case 2. When $m=4$, draw the knight move graph G.

Suppose there exists a Hamiltonian cycle C in the graph G. Since G is bipartite, C alternates between white and black vertices. Notice that every red vertex in C is adjacent to only blue vertices. And, there are the same number of red and blue vertices.

So, C must alternate between red and blue vertices.

Knight's Tour Theorem

Case 2. When $m=4$, draw the knight move graph G.

Suppose there exists a Hamiltonian cycle C in the graph G. Since G is bipartite, C alternates between white and black vertices.

Notice that every red vertex in C is adjacent to only blue vertices. And, there are the same number of red and blue vertices.

So, C must alternate between red and blue vertices. This means:
All vertices of C are "white and red" or "black and blue".

Knight's Tour Theorem

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:

Assume that there is a Hamiltonian cycle C in G.

Knight's Tour Theorem

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:

Assume that there is a Hamiltonian cycle C in G.
Then, C visits each vertex v and uses two of v 's incident edges.
If $\operatorname{deg}(v)=2$, then both of v 's incident edges are in C.

Knight's Tour Theorem

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:

Assume that there is a Hamiltonian cycle C in G.
Then, C visits each vertex v and uses two of v 's incident edges.
If $\operatorname{deg}(v)=2$, then both of v 's incident edges are in C.
Draw in all these "forced edges" above.

Knight's Tour Theorem

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:

Assume that there is a Hamiltonian cycle C in G.
Then, C visits each vertex v and uses two of v 's incident edges.
If $\operatorname{deg}(v)=2$, then both of v 's incident edges are in C.
Draw in all these "forced edges" above. With just these forced edges, there is already a cycle C^{\prime} of length four.

Knight's Tour Theorem

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:

Assume that there is a Hamiltonian cycle C in G.
Then, C visits each vertex v and uses two of v 's incident edges.
If $\operatorname{deg}(v)=2$, then both of v 's incident edges are in C.
Draw in all these "forced edges" above. With just these forced edges, there is already a cycle C^{\prime} of length four. This cycle C^{\prime} cannot be a subgraph of any Hamiltonian cycle, contradicting its existence. \square

Knight's Tour Theorem

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:

Assume that there is a Hamiltonian cycle C in G.
Then, C visits each vertex v and uses two of v 's incident edges.
If $\operatorname{deg}(v)=2$, then both of v 's incident edges are in C.
Draw in all these "forced edges" above. With just these forced edges, there is already a cycle C^{\prime} of length four. This cycle C^{\prime} cannot be a subgraph of any Hamiltonian cycle, contradicting its existence. \square

The 3×8 case is similar, and part of your homework.
See also: "Knight's Tours on a Torus", by J. J. Watkins, R. L. Hoenigman

