Definition: A coloring of a graph G is a labeling of the vertices of G with colors. [Technically, it is a function $f : V(G) \rightarrow \{1, 2, ..., c\}$.]

Definition: A coloring of a graph G is a labeling of the vertices of G with colors. [Technically, it is a function $f : V(G) \rightarrow \{1, 2, ..., c\}$.]

Definition: A **proper coloring** of G is a coloring of G such that no two adjacent vertices are labeled with the same color.

Definition: A coloring of a graph G is a labeling of the vertices of G with colors. [Technically, it is a function $f : V(G) \rightarrow \{1, 2, ..., c\}$.]

Definition: A **proper coloring** of G is a coloring of G such that no two adjacent vertices are labeled with the same color.

Example. W_6 :

We can properly color W_6 with _____ colors and no fewer.

Definition: A coloring of a graph G is a labeling of the vertices of G with colors. [Technically, it is a function $f : V(G) \rightarrow \{1, 2, ..., c\}$.]

Definition: A **proper coloring** of G is a coloring of G such that no two adjacent vertices are labeled with the same color.

Example. W_6 :

We can properly color W_6 with _____ colors and no fewer.

Of interest: What is the fewest colors necessary to properly color G?

Definition: The minimum number of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G) =$ "chi".

Definition: The minimum number of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G) =$ "chi".

Example. $\chi(K_n) =$ _____

Definition: The minimum number of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G) =$ "chi".

Example. $\chi(K_n) =$ _____

Proof. A proper coloring of K_n must use at least _____ colors, because every vertex is adjacent to every other vertex.

Definition: The minimum number of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G) =$ "chi".

Example. $\chi(K_n) =$ _____

Proof. A proper coloring of K_n must use at least _____ colors, because every vertex is adjacent to every other vertex. With fewer than _____ colors, there would be two adjacent vertices colored the same.

Definition: The minimum number of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G) =$ "chi".

Example. $\chi(K_n) =$ _____

Proof. A proper coloring of K_n must use at least _____ colors, because every vertex is adjacent to every other vertex. With fewer than _____ colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_n .

Definition: The minimum number of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G) =$ "chi".

Example. $\chi(K_n) =$ _____

Proof. A proper coloring of K_n must use at least _____ colors, because every vertex is adjacent to every other vertex. With fewer than _____ colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_n .

 $\star \chi(G) = k$ is the same as:

Definition: The minimum number of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G) =$ "chi".

Example. $\chi(K_n) =$ _____

Proof. A proper coloring of K_n must use at least _____ colors, because every vertex is adjacent to every other vertex. With fewer than _____ colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_n .

 $\star \chi(G) = k$ is the same as:

1 There is a proper coloring of G with k colors.

Definition: The minimum number of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G) =$ "chi".

Example. $\chi(K_n) =$ _____

Proof. A proper coloring of K_n must use at least _____ colors, because every vertex is adjacent to every other vertex. With fewer than _____ colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_n .

 $\star \chi(G) = k$ is the same as:

- **1** There is a proper coloring of G with k colors.
- **2** There is no proper coloring of G with k 1 colors.

Definition: The minimum number of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G) =$ "chi".

Example. $\chi(K_n) =$ _____

Proof. A proper coloring of K_n must use at least _____ colors, because every vertex is adjacent to every other vertex. With fewer than _____ colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_n .

 $\star \chi(G) = k$ is the same as:

- **1** There is a proper coloring of G with k colors. (Show it!)
- **2** There is no proper coloring of G with k 1 colors. (Prove it!)

Lemma C: If *H* is a subgraph of *G*, then $\chi(H) \leq \chi(G)$.

Lemma C: If H is a subgraph of G, then $\chi(H) \le \chi(G)$. Pf. If $\chi(G) = k$, then

Lemma C: If *H* is a subgraph of *G*, then $\chi(H) \leq \chi(G)$.

Pf. If $\chi(G) = k$, then there is a proper coloring of G using k colors.

Lemma C: If *H* is a subgraph of *G*, then $\chi(H) \leq \chi(G)$.

Pf. If $\chi(G) = k$, then there is a proper coloring of G using k colors. Let the vertices of H inherit their coloring from G. This gives a proper coloring of H using k colors.

Lemma C: If *H* is a subgraph of *G*, then $\chi(H) \leq \chi(G)$.

Pf. If $\chi(G) = k$, then there is a proper coloring of G using k colors. Let the vertices of H inherit their coloring from G. This gives a proper coloring of H using k colors. In turn, this implies $\chi(H) \le k$.

Lemma C: If *H* is a subgraph of *G*, then $\chi(H) \leq \chi(G)$.

Pf. If $\chi(G) = k$, then there is a proper coloring of G using k colors. Let the vertices of H inherit their coloring from G. This gives a proper coloring of H using k colors. In turn, this implies $\chi(H) \le k$.

If G contains a **clique** of size k (subgraph isomorphic to K_k), then what can we say about $\chi(G)$?

Lemma C: If *H* is a subgraph of *G*, then $\chi(H) \leq \chi(G)$.

Pf. If $\chi(G) = k$, then there is a proper coloring of G using k colors. Let the vertices of H inherit their coloring from G. This gives a proper coloring of H using k colors. In turn, this implies $\chi(H) \le k$.

If G contains a **clique** of size k (subgraph isomorphic to K_k), then what can we say about $\chi(G)$?

Example. Calculate $\chi(G)$ for this graph G:

How to prove $\chi(G) \ge k$?

How to prove $\chi(G) \ge k$?

One way: Find a (small) subgraph H of G that requires k colors.

How to prove $\chi(G) \ge k$?

One way: Find a (small) subgraph H of G that requires k colors.

Definition: A graph *H* is called **critical** if for every proper subgraph $J \subsetneq H$, then $\chi(J) < \chi(H)$.

How to prove $\chi(G) \ge k$?

One way: Find a (small) subgraph H of G that requires k colors.

Definition: A graph *H* is called **critical** if for every proper subgraph $J \subsetneq H$, then $\chi(J) < \chi(H)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H) = \chi(G)$.

How to prove $\chi(G) \ge k$?

One way: Find a (small) subgraph H of G that requires k colors.

Definition: A graph H is called **critical** if for every proper subgraph $J \subsetneq H$, then $\chi(J) < \chi(H)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H) = \chi(G)$.

(Stupid) Proof. If G is critical, stop. Define H = G.

How to prove $\chi(G) \ge k$?

One way: Find a (small) subgraph H of G that requires k colors.

Definition: A graph H is called **critical** if for every proper subgraph $J \subsetneq H$, then $\chi(J) < \chi(H)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H) = \chi(G)$.

(Stupid) Proof. If G is critical, stop. Define H = G.

If not, then there exists a proper subgraph G_1 of G with ______ If G_1 is critical, stop. Define $H = G_1$.

How to prove $\chi(G) \ge k$?

One way: Find a (small) subgraph H of G that requires k colors.

Definition: A graph H is called **critical** if for every proper subgraph $J \subsetneq H$, then $\chi(J) < \chi(H)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H) = \chi(G)$.

(Stupid) Proof. If G is critical, stop. Define H = G.

If not, then there exists a proper subgraph G_1 of G with ______ If G_1 is critical, stop. Define $H = G_1$.

If not, then there exists a proper subgraph G_2 of G_1 with ______ If G_2 is critical, stop. Define $H = G_2$.

How to prove $\chi(G) \ge k$?

One way: Find a (small) subgraph H of G that requires k colors.

Definition: A graph *H* is called **critical** if for every proper subgraph $J \subsetneq H$, then $\chi(J) < \chi(H)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H) = \chi(G)$.

(Stupid) Proof. If G is critical, stop. Define H = G.

If not, then there exists a proper subgraph G_1 of G with ______ If G_1 is critical, stop. Define $H = G_1$.

If not, then there exists a proper subgraph G_2 of G_1 with _____ If G_2 is critical, stop. Define $H = G_2$. If not, then there exists · · ·

Since G is finite, there will be some proper subgraph G_l of G_{l-1} such that G_l is critical and $\chi(G_l) = \chi(G_{l-1}) = \cdots = \chi(G)$.

What do we know about critical graphs?

What do we know about critical graphs?

Thm 2.1.1: Every critical graph is connected.

What do we know about critical graphs?

Thm 2.1.1: Every critical graph is connected.

Thm 2.1.3: If G is critical and $\chi(G) = 4$, then deg $(v) \ge 3$ for all v.

What do we know about critical graphs?

Thm 2.1.1: Every critical graph is connected.

Thm 2.1.3: If G is critical and $\chi(G) = 4$, then deg $(v) \ge 3$ for all v.

Proof. Suppose not. Then there is some $v \in V(G)$ with deg $(v) \leq 2$. Remove v from G to create H.

What do we know about critical graphs?

Thm 2.1.1: Every critical graph is connected.

Thm 2.1.3: If G is critical and $\chi(G) = 4$, then deg $(v) \ge 3$ for all v.

Proof. Suppose not. Then there is some $v \in V(G)$ with deg $(v) \leq 2$. Remove v from G to create H.

Similarly: If G is critical, then for all $v \in V(G)$, deg $(v) \ge \chi(G) - 1$.

Bipartite graphs

Question: What is $\chi(C_n)$ when *n* is odd?

Answer:

Bipartite graphs

Question: What is $\chi(C_n)$ when *n* is odd?

Answer:

Definition: A graph is called **bipartite** if $\chi(G) \leq 2$.

Example. $K_{m,n}$, \Box_n , Trees

Bipartite graphs

Question: What is $\chi(C_n)$ when *n* is odd?

Answer:

Definition: A graph is called **bipartite** if $\chi(G) \leq 2$.

Example. $K_{m,n}$, \Box_n , Trees

Thm 2.1.6: G is bipartite \iff every cycle in G has even length.
Bipartite graphs

Question: What is $\chi(C_n)$ when *n* is odd?

Answer:

Definition: A graph is called **bipartite** if $\chi(G) \leq 2$.

Example. $K_{m,n}$, \Box_n , Trees

Thm 2.1.6: G is bipartite \iff every cycle in *G* has even length. (\Rightarrow) Let *G* be bipartite. Assume that there is some cycle *C* of odd length contained in *G*...

(\Leftarrow) Suppose that every cycle in *G* has even length. We want to show that *G* is bipartite. Consider the case when *G* is connected.

(\Leftarrow) Suppose that every cycle in *G* has even length. We want to show that *G* is bipartite. Consider the case when *G* is connected.

Plan: Construct a coloring on *G* and prove that it is proper.

(\Leftarrow) Suppose that every cycle in *G* has even length. We want to show that *G* is bipartite. Consider the case when *G* is connected.

Plan: Construct a coloring on *G* and prove that it is proper.

Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y:

 $\begin{cases} blue & \text{if } d(x, y) \text{ is even.} \\ red & \text{if } d(x, y) \text{ is odd.} \end{cases}$

(\Leftarrow) Suppose that every cycle in *G* has even length. We want to show that *G* is bipartite. Consider the case when *G* is connected.

Plan: Construct a coloring on *G* and prove that it is proper.

Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y:

 $\begin{cases} blue & \text{if } d(x, y) \text{ is even.} \\ red & \text{if } d(x, y) \text{ is odd.} \end{cases}$

Question: Is this a proper coloring of G?

Suppose not.

(\Leftarrow) Suppose that every cycle in *G* has even length. We want to show that *G* is bipartite. Consider the case when *G* is connected.

Plan: Construct a coloring on *G* and prove that it is proper.

Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y:

 $\begin{cases} blue & \text{if } d(x, y) \text{ is even.} \\ \text{red} & \text{if } d(x, y) \text{ is odd.} \end{cases}$

Question: Is this a proper coloring of G?

Suppose not. Then there are two vertices v and w of the same color that are adjacent.

(\Leftarrow) Suppose that every cycle in *G* has even length. We want to show that *G* is bipartite. Consider the case when *G* is connected.

Plan: Construct a coloring on *G* and prove that it is proper.

Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y:

 $\begin{cases} blue & \text{if } d(x, y) \text{ is even.} \\ \text{red} & \text{if } d(x, y) \text{ is odd.} \end{cases}$

Question: Is this a proper coloring of G?

Suppose not. Then there are two vertices v and w of the same color that are adjacent. This generates a contradiction because there exists an odd cycle as follows:

Parallel to the idea of vertex coloring is the idea of edge coloring.

Parallel to the idea of vertex coloring is the idea of edge coloring.

Definition: An **edge coloring** of a graph G is a labeling of the edges of G with colors. [Technically, it is a function $f : E(G) \rightarrow \{1, 2, ..., l\}$.]

Parallel to the idea of vertex coloring is the idea of edge coloring.

Definition: An **edge coloring** of a graph G is a labeling of the edges of G with colors. [Technically, it is a function $f : E(G) \rightarrow \{1, 2, ..., l\}$.]

Definition: A **proper** edge coloring of G is an edge coloring of G such that no two *adjacent edges* are colored the same.

Parallel to the idea of vertex coloring is the idea of edge coloring.

Definition: An **edge coloring** of a graph G is a labeling of the edges of G with colors. [Technically, it is a function $f : E(G) \rightarrow \{1, 2, ..., l\}$.]

Definition: A **proper** edge coloring of G is an edge coloring of G such that no two *adjacent edges* are colored the same.

Example. Cube graph (\Box_3) :

We can properly edge color \Box_3 with _____ colors and no fewer.

Parallel to the idea of vertex coloring is the idea of edge coloring.

Definition: An **edge coloring** of a graph G is a labeling of the edges of G with colors. [Technically, it is a function $f : E(G) \rightarrow \{1, 2, ..., l\}$.]

Definition: A **proper** edge coloring of G is an edge coloring of G such that no two *adjacent edges* are colored the same.

Example. Cube graph (\Box_3) :

We can properly edge color \Box_3 with _____ colors and no fewer.

Definition: The minimum number of colors necessary to properly edge color a graph G is called the **edge chromatic number** of G, denoted $\chi'(G) =$ "chi prime".

Thm 2.2.1: For any graph G, $\chi'(G) \ge \Delta(G)$.

Thm 2.2.1: For any graph *G*, $\chi'(G) \ge \Delta(G)$. *Thm 2.2.2:* Vizing's Theorem: For any graph *G*, $\chi'(G)$ equals either $\Delta(G)$ or $\Delta(G) + 1$.

Thm 2.2.1: For any graph G, $\chi'(G) \ge \Delta(G)$. Thm 2.2.2: Vizing's Theorem: For any graph G, $\chi'(G)$ equals either $\Delta(G)$ or $\Delta(G) + 1$. *Proof.* Hard. (See reference [24] if interested.)

Thm 2.2.1: For any graph G, $\chi'(G) \ge \Delta(G)$. Thm 2.2.2: Vizing's Theorem: For any graph G, $\chi'(G)$ equals either $\Delta(G)$ or $\Delta(G) + 1$. Proof. Hard. (See reference [24] if interested.) Consequence: To determine $\chi'(G)$,

Thm 2.2.1: For any graph G, $\chi'(G) \ge \Delta(G)$. Thm 2.2.2: Vizing's Theorem: For any graph G, $\chi'(G)$ equals either $\Delta(G)$ or $\Delta(G) + 1$. Proof. Hard. (See reference [24] if interested.) Consequence: To determine $\chi'(G)$,

Fact: **Most** 3-regular graphs have edge chromatic number 3.

Definition: Another name for 3-regular is **cubic**.

Definition: A **snark** is a cubic graph with edge chromatic number 4.

Definition: Another name for 3-regular is **cubic**.

Definition: A **snark** is a cubic graph with edge chromatic number 4. **Example**. The Petersen graph *P* is a snark.

Definition: Another name for 3-regular is **cubic**.

Definition: A **snark** is a cubic graph with edge chromatic number 4. **Example.** The Petersen graph P is a snark. It is 3-regular. \checkmark

Definition: Another name for 3-regular is **cubic**.

Definition: A snark is a cubic graph with edge chromatic number 4. Example. The Petersen graph P is a snark. It is 3-regular. \checkmark Let us prove that it can not be colored with three colors.

Definition: Another name for 3-regular is **cubic**. **Definition:** A **snark** is a cubic graph with edge chromatic number 4. **Example.** The Petersen graph P is a snark. It is 3-regular. \checkmark Let us prove that it can not be colored with three colors. Assume you can color it with three colors. WLOG, assume *ab*, *ac*, *ad*.

Definition: Another name for 3-regular is **cubic**.

Definition: A snark is a cubic graph with edge chromatic number 4. Example. The Petersen graph P is a snark. It is 3-regular. \checkmark Let us prove that it can not be colored with three colors. Assume you can color it with three colors. WLOG, assume *ab*, *ac*, *ad*. Either **Case 1**: *be* and *bi*

Definition: Another name for 3-regular is **cubic**.

Definition: Another name for 3-regular is **cubic**.

Definition: Another name for 3-regular is **cubic**.

Definition: Another name for 3-regular is **cubic**.

Definition: Another name for 3-regular is **cubic**.

Definition: Another name for 3-regular is **cubic**.

Definition: Another name for 3-regular is **cubic**.

Definition: Another name for 3-regular is **cubic**.

Definition: Another name for 3-regular is **cubic**.

Definition: Another name for 3-regular is **cubic**.

Definition: Another name for 3-regular is **cubic**.

Definition: A snark is a cubic graph with edge chromatic number 4. **Example.** The Petersen graph P is a snark. It is 3-regular. \checkmark Let us prove that it can not be colored with three colors. Assume you can color it with three colors. WLOG, assume ab, ac, ad. Either **Case 1**: be and bi or **Case 2**: be and bi. Either **Case 1a**: ig and ij or **Case 1b**: ig and ij. **Cases 2a**, **2b**

In all cases, it is not possible to edge color with 3 colors, so $\chi'(G) = 4$.

The edge chromatic number of complete graphs

Goal: Determine $\chi'(K_n)$ for all *n*.

The edge chromatic number of complete graphs

Goal: Determine $\chi'(K_n)$ for all *n*.

Vertex Degree Analysis: The degree of every vertex in *K_n* is _____.
Goal: Determine $\chi'(K_n)$ for all *n*.

Vertex Degree Analysis: The degree of every vertex in K_n is _____. Vizing's theorem implies that $\chi'(K_n) =$ _____ or _____. If $\chi'(K_n) =$ _____, then each vertex has an edge leaving of each color.

Goal: Determine $\chi'(K_n)$ for all *n*.

Vertex Degree Analysis: The degree of every vertex in K_n is _____. Vizing's theorem implies that $\chi'(K_n) =$ _____ or _____. If $\chi'(K_n) =$ _____, then each vertex has an edge leaving of each color.

Question: How many red edges are there?

Goal: Determine $\chi'(K_n)$ for all *n*.

Vertex Degree Analysis: The degree of every vertex in K_n is _____. Vizing's theorem implies that $\chi'(K_n) =$ _____ or _____. If $\chi'(K_n) =$ _____, then each vertex has an edge leaving of each color.

Question: How many red edges are there?

This is only an integer when:

So, the best we can expect is that $\begin{cases} \chi'(K_{2n}) = \\ \chi'(K_{2n-1}) = \end{cases}$

Thm 2.2.3: $\chi'(K_{2n}) = 2n - 1.$

Proof. We prove this using the *turning trick*.

Thm 2.2.3: $\chi'(K_{2n}) = 2n - 1$. *Proof.* We prove this using the *turning trick*. Label the vertices of K_{2n} $0, 1, \dots, 2n - 2, x$. Now, Connect 0 with x , Connect 1 with 2n - 2, \vdots Connect n - 1 with n.

Thm 2.2.3: $\chi'(K_{2n}) = 2n - 1$. *Proof.* We prove this using the *turning trick*. Label the vertices of K_{2n} $0, 1, \dots, 2n - 2, x$. Now, Connect 0 with x , Connect 1 with 2n - 2, \vdots Connect n - 1 with n. Now **turn** the inside edges.

Thm 2.2.3: $\chi'(K_{2n}) = 2n - 1$. *Proof.* We prove this using the *turning trick*. Label the vertices of K_{2n} $0, 1, \ldots, 2n - 2, x$. Now, Connect 0 with х. Connect 1 with 2n - 2, Connect n-1 with n Now **turn** the inside edges. And do it again. (and again, ...)

Thm 2.2.3: $\chi'(K_{2n}) = 2n - 1$. *Proof.* We prove this using the *turning trick*. Label the vertices of K_{2n} $0, 1, \ldots, 2n - 2, x$. Now, Connect 0 with Χ. Connect 1 with 2n-2, Connect n-1 with n Now **turn** the inside edges. And do it again. (and again, ...) Each time, new edges are used. This is because each of the edges is a different "circular length": vertices are at circ. distance 1, 3, 5, \dots , 4, 2 from each other, and x is connected to a different vertex each time.

Theorem 2.2.4: $\chi'(K_{2n-1}) = 2n - 1.$

Theorem 2.2.4: $\chi'(K_{2n-1}) = 2n - 1.$

This construction also gives a way to edge color K_{2n-1} with 2n-1 colors—simply delete vertex x!

Theorem 2.2.4: $\chi'(K_{2n-1}) = 2n - 1.$

This construction also gives a way to edge color K_{2n-1} with 2n-1 colors—simply delete vertex x!

This is related to the area of combinatorial designs.

Question: Is it possible for six tennis players to play one match per day in a five-day tournament in such a way that each player plays each other player once?

Theorem 2.2.4: $\chi'(K_{2n-1}) = 2n - 1.$

This construction also gives a way to edge color K_{2n-1} with 2n-1 colors—simply delete vertex x!

This is related to the area of combinatorial designs.

Question: Is it possible for six tennis players to play one match per day in a five-day tournament in such a way that each player plays each other player once?

Day 1	0x	14	23
Day 2	1x	20	34
Day 3	2x	31	40
Day 4	3x	42	01
Day 5	4x	03	12

Theorem 2.2.3 proves there is such a tournament for all even numbers.