## Families of Graphs <br>  <br> Coser

- Path graph $P_{n}$ : The path graph $P_{n}$ has $n+1$ vertices, $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ and $n$ edges, $E=\left\{v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{n-1} v_{n}\right\}$.
$\star$ The length of a path is the number of edges in the path.


## Families of Graphs <br> $\therefore \uparrow \Leftrightarrow$ <br> 

- Path graph $P_{n}$ : The path graph $P_{n}$ has $n+1$ vertices, $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ and $n$ edges, $E=\left\{v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{n-1} v_{n}\right\}$.
$\star$ The length of a path is the number of edges in the path.
- Cycle graph $C_{n}$ : The cycle graph $C_{n}$ has $n$ vertices, $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $n$ edges, $E=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}, v_{n} v_{1}\right\}$.


## Families of Graphs

- Path graph $P_{n}$ : The path graph $P_{n}$ has $n+1$ vertices, $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ and $n$ edges, $E=\left\{v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{n-1} v_{n}\right\}$.
$\star$ The length of a path is the number of edges in the path.
- Cycle graph $C_{n}$ : The cycle graph $C_{n}$ has $n$ vertices, $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $n$ edges, $E=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}, v_{n} v_{1}\right\}$.

We often try to find and/or count paths and cycles in a graph.
Question: What is the smallest path? Smallest cycle?

## Families of Graphs <br>  <br> ? <br> 

- Complete graph $K_{n}$ : The complete graph $K_{n}$ has $n$ edges, $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and has an edge connecting every pair of distinct vertices, for a total of $\qquad$ edges.


## Families of Graphs <br> $\therefore \therefore \Leftrightarrow$ <br> ? <br> 

- Complete graph $K_{n}$ : The complete graph $K_{n}$ has $n$ edges, $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and has an edge connecting every pair of distinct vertices, for a total of $\qquad$ edges.

Definition: A bipartite graph is a graph where the vertex set can be broken into two parts such that there are no edges between vertices in the same part.

## Families of Graphs

- Complete graph $K_{n}$ : The complete graph $K_{n}$ has $n$ edges, $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and has an edge connecting every pair of distinct vertices, for a total of $\qquad$ edges.

Definition: A bipartite graph is a graph where the vertex set can be broken into two parts such that there are no edges between vertices in the same part.

- Complete bipartite graph $K_{m, n}$ : The complete bipartite graph $K_{m, n}$ has $m+n$ vertices $V=\left\{v_{1}, \ldots, v_{m}, w_{1}, \ldots, w_{n}\right\}$ and an edge connecting each $v$ vertex to each $w$ vertex.


## Families of Graphs


$\star$
$\star$

- Wheel graph $W_{n}$ : The wheel graph $W_{n}$ has $n+1$ vertices $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$. Arrange and connect the last $n$ vertices in a cycle (the rim of the wheel). Place $v_{0}$ in the center (the hub), and connect it to every other vertex.


## Families of Graphs

- Wheel graph $W_{n}$ : The wheel graph $W_{n}$ has $n+1$ vertices $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$. Arrange and connect the last $n$ vertices in a cycle (the rim of the wheel). Place $v_{0}$ in the center (the hub), and connect it to every other vertex.
- Star graph $S t_{n}$ : The star graph $S t_{n}$ has $n+1$ vertices $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ and $n$ edges $E=\left\{v_{0} v_{1}, v_{0} v_{2}, \ldots, v_{0} v_{n}\right\}$.


## Families of Graphs

- Wheel graph $W_{n}$ : The wheel graph $W_{n}$ has $n+1$ vertices $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$. Arrange and connect the last $n$ vertices in a cycle (the rim of the wheel). Place $v_{0}$ in the center (the hub), and connect it to every other vertex.
- Star graph $S t_{n}$ : The star graph $S t_{n}$ has $n+1$ vertices $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ and $n$ edges $E=\left\{v_{0} v_{1}, v_{0} v_{2}, \ldots, v_{0} v_{n}\right\}$.
- Cube graph $\square_{n}$ : The cube graph in $n$ dimensions, $\square_{n}$, has $2^{n}$ vertices. We index the vertices by binary numbers of length $n$. Two vertices are adjacent when their binary numbers differ by exactly one digit.


## Special Graphs <br>  <br> N

Two graphs we will see on a consistant basis are:

Petersen graph $P$


Grötzsch graph Gr


## Special Graphs

Definition: The platonic solids are the tetrahedron, cube, octahedron, icosahedron, and dodecahedron. They are the only regular convex polyhedra made of regular polygons.

## Special Graphs

Definition: The platonic solids are the tetrahedron, cube, octahedron, icosahedron, and dodecahedron. They are the only regular convex polyhedra made of regular polygons.

Definition: The Schlegel diagram of a polyhedron is a planar 2D graph that represents a 3D object, where vertices of the graph represent vertices of the polyhedron, and edges of the graph represent the edges of the polyhedron.

## Special Graphs


,

Definition: The platonic solids are the tetrahedron, cube, octahedron, icosahedron, and dodecahedron. They are the only regular convex polyhedra made of regular polygons.

Definition: The Schlegel diagram of a polyhedron is a planar 2D graph that represents a 3D object, where vertices of the graph represent vertices of the polyhedron, and edges of the graph represent the edges of the polyhedron.

- The Platonic graphs are the Schlegel diagrams of the five platonic solids.



## When are two graphs the same?

## When are two graphs the same?

Two graphs $G_{1}$ and $G_{2}$ are equal $\left(G_{1}=G_{2}\right)$ if they have the exact same vertex sets and edge sets.

## When are two graphs the same?

Two graphs $G_{1}$ and $G_{2}$ are equal $\left(G_{1}=G_{2}\right)$ if they have the exact same vertex sets and edge sets.

The graphs $G_{1}$ and $G_{2}$ are isomorphic $\left(G_{1} \approx G_{2}\right)$ if there exists a bijection on the vertex sets, $\varphi: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ such that $v_{i} v_{j}$ is an edge of $G_{1}$ iff $\varphi\left(v_{i}\right) \varphi\left(v_{j}\right)$ is an edge of $G_{2}$.

## When are two graphs the same?

Two graphs $G_{1}$ and $G_{2}$ are equal $\left(G_{1}=G_{2}\right)$ if they have the exact same vertex sets and edge sets.

The graphs $G_{1}$ and $G_{2}$ are isomorphic $\left(G_{1} \approx G_{2}\right)$ if there exists a bijection on the vertex sets, $\varphi: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ such that $v_{i} v_{j}$ is an edge of $G_{1}$ iff $\quad \varphi\left(v_{i}\right) \varphi\left(v_{j}\right)$ is an edge of $G_{2}$.

In this course, we will spend a large amount of time trying to figure out whether two given graphs are the same.

## When are two graphs the same?

Two graphs $G_{1}$ and $G_{2}$ are equal $\left(G_{1}=G_{2}\right)$ if they have the exact same vertex sets and edge sets.
The graphs $G_{1}$ and $G_{2}$ are isomorphic $\left(G_{1} \approx G_{2}\right)$ if there exists a bijection on the vertex sets, $\varphi: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ such that $v_{i} v_{j}$ is an edge of $G_{1}$ iff $\quad \varphi\left(v_{i}\right) \varphi\left(v_{j}\right)$ is an edge of $G_{2}$.

In this course, we will spend a large amount of time trying to figure out whether two given graphs are the same.
Side note: The set of homomorphisms of a graph (isomorphisms into itself) is a measure of its symmetry. Example. $\Delta$

## Simple operations on graphs

The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ can mean two different things:

## Simple operations on graphs

The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ can mean two different things:

- When the vertex sets are different, the (disjoint) union $H$ of $G_{1}$ and $G_{2}$ is formed by placing the graphs side by side. In this case, $H=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$.


## Simple operations on graphs

The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ can mean two different things:

- When the vertex sets are different, the (disjoint) union $H$ of $G_{1}$ and $G_{2}$ is formed by placing the graphs side by side. In this case, $H=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$.
- When the vertex sets are the same, then the (edge) union $H$ of $G_{1}$ and $G_{2}$ contains every edge of both $E_{1}$ and $E_{2}$. In this case, $H=\left(V, E_{1} \cup E_{2}\right)$.


## Simple operations on graphs

The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ can mean two different things:

- When the vertex sets are different, the (disjoint) union $H$ of $G_{1}$ and $G_{2}$ is formed by placing the graphs side by side. In this case, $H=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$.
- When the vertex sets are the same, then the (edge) union $H$ of $G_{1}$ and $G_{2}$ contains every edge of both $E_{1}$ and $E_{2}$. In this case, $H=\left(V, E_{1} \cup E_{2}\right)$.

The complement $G^{c}$ or $\bar{G}$ of a graph $G=(V, E)$ is a graph with vertex set $V$ and whose edge set contains all edges NOT in $G$.

## Simple operations on graphs

The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ can mean two different things:

- When the vertex sets are different, the (disjoint) union $H$ of $G_{1}$ and $G_{2}$ is formed by placing the graphs side by side. In this case, $H=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$.
- When the vertex sets are the same, then the (edge) union $H$ of $G_{1}$ and $G_{2}$ contains every edge of both $E_{1}$ and $E_{2}$. In this case, $H=\left(V, E_{1} \cup E_{2}\right)$.

The complement $G^{c}$ or $\bar{G}$ of a graph $G=(V, E)$ is a graph with vertex set $V$ and whose edge set contains all edges NOT in $G$.

Consequence: Suppose $G=\left(V, E_{1}\right)$ and $G^{c}=\left(V, E_{2}\right)$. Then $E_{1} \cap E_{2}=\emptyset$ and $E_{1} \cup E_{2}=E\left(K_{|V|}\right)$. (Recall $K_{n}$ : complete graph.)

## Subgraphs

A subgraph $H$ of a graph $G$ is a graph where every vertex of $H$ is a vertex of $G$, and where every edge of $H$ is an edge of $G$.

## Subgraphs

A subgraph $H$ of a graph $G$ is a graph where every vertex of $H$ is a vertex of $G$, and where every edge of $H$ is an edge of $G$. $\star$ If edge $e$ of $G$ is in $H$, then the endpoints of $e$ must also be in $H$.

## Subgraphs

A subgraph $H$ of a graph $G$ is a graph where every vertex of $H$ is a vertex of $G$, and where every edge of $H$ is an edge of $G$.
$\star$ If edge $e$ of $G$ is in $H$, then the endpoints of $e$ must also be in $H$.

A subgraph $H$ is a proper subgraph if $H \neq G$.

## Subgraphs

A subgraph $H$ of a graph $G$ is a graph where every vertex of $H$ is a vertex of $G$, and where every edge of $H$ is an edge of $G$.
$\star$ If edge $e$ of $G$ is in $H$, then the endpoints of $e$ must also be in $H$.

A subgraph $H$ is a proper subgraph if $H \neq G$.

If $G_{1}$ and $G_{2}$ are two graphs, we say that $G_{1}$ contains $G_{2}$ if there exists a subgraph $H$ of $G_{1}$ such that $H$ is isomorphic to $G_{2}$.

## Subgraphs

A subgraph $H$ of a graph $G$ is a graph where every vertex of $H$ is a vertex of $G$, and where every edge of $H$ is an edge of $G$.
$\star$ If edge $e$ of $G$ is in $H$, then the endpoints of $e$ must also be in $H$.

A subgraph $H$ is a proper subgraph if $H \neq G$.

If $G_{1}$ and $G_{2}$ are two graphs, we say that $G_{1}$ contains $G_{2}$ if there exists a subgraph $H$ of $G_{1}$ such that $H$ is isomorphic to $G_{2}$.

Example. Show that the wheel $W_{6}$ contains a cycle of length 3,4 , 5, 6, and 7 .

## Induced Subgraphs

For a graph $G=(V, E)$ and any subset $W \subseteq V(G)$, we can define the subgraph of $G$ induced by $W$.

## Induced Subgraphs

For a graph $G=(V, E)$ and any subset $W \subseteq V(G)$, we can define the subgraph of $G$ induced by $W$.
Define $H$ :

- $V(H)=W$
- $E(H)=$ edges in $E(G)$ that have endpoints exclusively in $W$.


## Induced Subgraphs

For a graph $G=(V, E)$ and any subset $W \subseteq V(G)$, we can define the subgraph of $G$ induced by $W$.
Define $H$ :

- $V(H)=W$
- $E(H)=$ edges in $E(G)$ that have endpoints exclusively in $W$.

Any graph that could be defined in this way is called an induced subgraph of $G$.

## Induced Subgraphs

For a graph $G=(V, E)$ and any subset $W \subseteq V(G)$, we can define the subgraph of $G$ induced by $W$.
Define $H$ :

- $V(H)=W$
- $E(H)=$ edges in $E(G)$ that have endpoints exclusively in $W$.

Any graph that could be defined in this way is called an induced subgraph of $G$.
Induced subgraphs of $G$ are always subgraphs of $G$, but not vice versa.

