Families of Graphs 🔅 🏠 🍲 法 🔁

▶ Path graph P_n : The path graph P_n has n + 1 vertices, $V = \{v_0, v_1, \dots, v_n\}$ and n edges, $E = \{v_0v_1, v_1v_2, \dots, v_{n-1}v_n\}.$

★ The **length** of a path is the number of *edges* in the path.

Families of Graphs (c) (c) (c) (c) (c) (c) (c)

▶ Path graph P_n : The path graph P_n has n + 1 vertices, $V = \{v_0, v_1, \dots, v_n\}$ and n edges, $E = \{v_0v_1, v_1v_2, \dots, v_{n-1}v_n\}.$

★ The **length** of a path is the number of *edges* in the path.

• Cycle graph C_n : The cycle graph C_n has n vertices, $V = \{v_1, \ldots, v_n\}$ and n edges, $E = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1\}.$

Families of Graphs 🛛 🏠 🏠 🛣 🔀 🛣

▶ Path graph P_n : The path graph P_n has n + 1 vertices, $V = \{v_0, v_1, \dots, v_n\}$ and n edges, $E = \{v_0v_1, v_1v_2, \dots, v_{n-1}v_n\}.$

★ The **length** of a path is the number of *edges* in the path.

• Cycle graph
$$C_n$$
: The cycle graph C_n has n vertices,
 $V = \{v_1, \ldots, v_n\}$ and n edges,
 $E = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1\}.$

We often try to find and/or count paths and cycles in a graph. *Question:* What is the smallest path? Smallest cycle?

Families of Graphs \bigcirc \bigcirc \bigcirc \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes

Complete graph K_n: The complete graph K_n has n edges, V = {v₁,..., v_n} and has an edge connecting every pair of distinct vertices, for a total of ______ edges.

Families of Graphs 🖸 🏠 🏠 🛣 🔁 🛧 🔁

Complete graph K_n: The complete graph K_n has n edges, V = {v₁,..., v_n} and has an edge connecting every pair of distinct vertices, for a total of ______ edges.

Definition: A **bipartite** graph is a graph where the vertex set can be broken into two parts such that there are no edges between vertices in the same part.

Families of Graphs 🕜 🏠 🕸 😣 🛧 🔁

Complete graph K_n: The complete graph K_n has n edges, V = {v₁,..., v_n} and has an edge connecting every pair of distinct vertices, for a total of ______ edges.

Definition: A **bipartite** graph is a graph where the vertex set can be broken into two parts such that there are no edges between vertices in the same part.

▶ **Complete bipartite graph** $K_{m,n}$: The complete bipartite graph $K_{m,n}$ has m + n vertices $V = \{v_1, \ldots, v_m, w_1, \ldots, w_n\}$ and an edge connecting each v vertex to each w vertex.

Families of Graphs \bigcirc \bigcirc \bigcirc \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes

▶ Wheel graph W_n : The wheel graph W_n has n + 1 vertices $V = \{v_0, v_1, \ldots, v_n\}$. Arrange and connect the last n vertices in a cycle (the rim of the wheel). Place v_0 in the center (the hub), and connect it to every other vertex.

Families of Graphs \bigcirc \bigcirc \bigcirc \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes

- Wheel graph W_n: The wheel graph W_n has n + 1 vertices V = {v₀, v₁,..., v_n}. Arrange and connect the last n vertices in a cycle (the rim of the wheel). Place v₀ in the center (the hub), and connect it to every other vertex.
- ▶ Star graph St_n : The star graph St_n has n + 1 vertices $V = \{v_0, v_1, \dots, v_n\}$ and n edges $E = \{v_0v_1, v_0v_2, \dots, v_0v_n\}$.

Families of Graphs \bigcirc \bigcirc \bigcirc \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes

- ▶ Wheel graph W_n : The wheel graph W_n has n + 1 vertices $V = \{v_0, v_1, \ldots, v_n\}$. Arrange and connect the last n vertices in a cycle (the rim of the wheel). Place v_0 in the center (the hub), and connect it to every other vertex.
- ▶ Star graph St_n : The star graph St_n has n + 1 vertices $V = \{v_0, v_1, \dots, v_n\}$ and n edges $E = \{v_0v_1, v_0v_2, \dots, v_0v_n\}$.
- ► Cube graph □_n: The cube graph in *n* dimensions, □_n, has 2ⁿ vertices. We index the vertices by binary numbers of length *n*. Two vertices are adjacent when their binary numbers differ by exactly one digit.

Two graphs we will see on a consistant basis are:

Grötzsch graph Gr

Definition: The **platonic solids** are the tetrahedron, cube, octahedron, icosahedron, and dodecahedron. They are the only regular convex polyhedra made of regular polygons.

Definition: The **platonic solids** are the tetrahedron, cube, octahedron, icosahedron, and dodecahedron. They are the only regular convex polyhedra made of regular polygons.

Definition: The **Schlegel diagram** of a polyhedron is a planar 2D graph that represents a 3D object, where vertices of the graph represent vertices of the polyhedron, and edges of the graph represent the edges of the polyhedron.

Definition: The **platonic solids** are the tetrahedron, cube, octahedron, icosahedron, and dodecahedron. They are the only regular convex polyhedra made of regular polygons.

Definition: The **Schlegel diagram** of a polyhedron is a planar 2D graph that represents a 3D object, where vertices of the graph represent vertices of the polyhedron, and edges of the graph represent the edges of the polyhedron.

The Platonic graphs are the Schlegel diagrams of the five platonic solids.

Two graphs G_1 and G_2 are **equal** ($G_1 = G_2$) if they have the exact same vertex sets and edge sets.

Two graphs G_1 and G_2 are **equal** ($G_1 = G_2$) if they have the exact same vertex sets and edge sets.

The graphs G_1 and G_2 are **isomorphic** $(G_1 \approx G_2)$ if there exists a *bijection* on the vertex sets, $\varphi : V(G_1) \rightarrow V(G_2)$ such that $v_i v_i$ is an edge of G_1 iff $\varphi(v_i)\varphi(v_i)$ is an edge of G_2 .

Two graphs G_1 and G_2 are **equal** ($G_1 = G_2$) if they have the exact same vertex sets and edge sets.

The graphs G_1 and G_2 are **isomorphic** $(G_1 \approx G_2)$ if there exists a *bijection* on the vertex sets, $\varphi : V(G_1) \rightarrow V(G_2)$ such that $v_i v_i$ is an edge of G_1 iff $\varphi(v_i)\varphi(v_i)$ is an edge of G_2 .

In this course, we will spend a large amount of time trying to figure out whether two given graphs are the same.

Two graphs G_1 and G_2 are **equal** ($G_1 = G_2$) if they have the exact same vertex sets and edge sets.

The graphs G_1 and G_2 are **isomorphic** $(G_1 \approx G_2)$ if there exists a *bijection* on the vertex sets, $\varphi : V(G_1) \rightarrow V(G_2)$ such that $v_i v_i$ is an edge of G_1 iff $\varphi(v_i)\varphi(v_i)$ is an edge of G_2 .

In this course, we will spend a large amount of time trying to figure out whether two given graphs are the same.

Side note: The set of homomorphisms of a graph (isomorphisms into itself) is a measure of its symmetry. Example. \triangle

The union of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ can mean two different things:

The **union** of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ can mean two different things:

When the vertex sets are different, the (disjoint) union H of G₁ and G₂ is formed by placing the graphs side by side. In this case, H = (V₁ ∪ V₂, E₁ ∪ E₂).

The **union** of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ can mean two different things:

- When the vertex sets are different, the (disjoint) union H of G₁ and G₂ is formed by placing the graphs side by side. In this case, H = (V₁ ∪ V₂, E₁ ∪ E₂).
- ▶ When the vertex sets are the same, then the (edge) union H of G_1 and G_2 contains every edge of both E_1 and E_2 . In this case, $H = (V, E_1 \cup E_2)$.

The **union** of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ can mean two different things:

- When the vertex sets are different, the (disjoint) union H of G₁ and G₂ is formed by placing the graphs side by side. In this case, H = (V₁ ∪ V₂, E₁ ∪ E₂).
- ▶ When the vertex sets are the same, then the (edge) union H of G_1 and G_2 contains every edge of both E_1 and E_2 . In this case, $H = (V, E_1 \cup E_2)$.

The **complement** G^c or \overline{G} of a graph G = (V, E) is a graph with vertex set V and whose edge set contains all edges **NOT** in G.

The **union** of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ can mean two different things:

- When the vertex sets are different, the (disjoint) union H of G₁ and G₂ is formed by placing the graphs side by side. In this case, H = (V₁ ∪ V₂, E₁ ∪ E₂).
- ▶ When the vertex sets are the same, then the (edge) union H of G_1 and G_2 contains every edge of both E_1 and E_2 . In this case, $H = (V, E_1 \cup E_2)$.

The **complement** G^c or \overline{G} of a graph G = (V, E) is a graph with vertex set V and whose edge set contains all edges **NOT** in G.

Consequence: Suppose $G = (V, E_1)$ and $G^c = (V, E_2)$. Then $E_1 \cap E_2 = \emptyset$ and $E_1 \cup E_2 = E(K_{|V|})$. (Recall K_n : complete graph.)

A subgraph H of a graph G is a graph where every vertex of H is a vertex of G, and where every edge of H is an edge of G.

A **subgraph** *H* of a graph *G* is a graph where every vertex of *H* is a vertex of *G*, and where every edge of *H* is an edge of *G*. \bigstar If edge *e* of *G* is in *H*, then the endpoints of *e* must also be in *H*.

A **subgraph** H of a graph G is a graph where every vertex of H is a vertex of G, and where every edge of H is an edge of G. \bigstar If edge e of G is in H, then the endpoints of e must also be in H.

A subgraph *H* is a **proper subgraph** if $H \neq G$.

A **subgraph** H of a graph G is a graph where every vertex of H is a vertex of G, and where every edge of H is an edge of G. \bigstar If edge e of G is in H, then the endpoints of e must also be in H.

A subgraph *H* is a **proper subgraph** if $H \neq G$.

If G_1 and G_2 are two graphs, we say that G_1 **contains** G_2 if there exists a subgraph H of G_1 such that H is isomorphic to G_2 .

A **subgraph** H of a graph G is a graph where every vertex of H is a vertex of G, and where every edge of H is an edge of G. \bigstar If edge e of G is in H, then the endpoints of e must also be in H.

A subgraph *H* is a **proper subgraph** if $H \neq G$.

If G_1 and G_2 are two graphs, we say that G_1 **contains** G_2 if there exists a subgraph H of G_1 such that H is isomorphic to G_2 . **Example.** Show that the wheel W_6 contains a cycle of length 3, 4, 5, 6, and 7.

For a graph G = (V, E) and any subset $W \subseteq V(G)$, we can define the subgraph of G **induced by** W.

For a graph G = (V, E) and any subset $W \subseteq V(G)$, we can define the subgraph of G **induced by** W.

Define *H*:

For a graph G = (V, E) and any subset $W \subseteq V(G)$, we can define the subgraph of G **induced by** W.

Define *H*:

Any graph that could be defined in this way is called an **induced subgraph** of G.

For a graph G = (V, E) and any subset $W \subseteq V(G)$, we can define the subgraph of G **induced by** W.

Define *H*:

Any graph that could be defined in this way is called an **induced subgraph** of G.

Induced subgraphs of G are always subgraphs of G, but not vice versa.