Course Notes

Graph Theory, Spring 2013

Queens College, Math 634

Prof. Christopher Hanusa

Web: http://people.qc.cuny.edu/faculty
/christopher.hanusa/courses/634sp13/

What is a graph?

A graph is made up of dots and lines.

A "dot" is called a vertex (or node, point, junction) One vertex - Two vertices.

A "line" is called an edge (or arc), and always connects two vertices.

A road map can be thought of as a graph.

- Represent each city or intersection as a vertex
- Roads correspond to edges.

However, a graph is an abstract concept.

- It doesn't matter whether the edge is straight or curved.
- All we care about is which vertices are connected.

Concept: Matchings

Suppose that:
Erika likes cherries and dates.
Frank likes apples and cherries.
Greg likes bananas and cherries. Helen likes apples, bananas, dates.

A graph can illustrate these relationships.

- Create one vertex for each person and one vertex for each fruit.
- Create an edge between person vertex v and fruit vertex w if person v likes fruit w.
Question: Is there a way for each person to receive a piece of fruit he or she likes?
Answer:
Related topics: assignments, perfect matchings, counting questions.

Concept: Planarity

Why does a circuit board look like this?
Question: Is graph G planar?

- If so, how can we draw it without crossings?
- If not, then how close to being planar is it?

Related topics: planarity, non-planarity stats, graph embeddings
Also related to a circuit board:

- Where to drill the holes?
- How to drill them as fast as possible?

Related topics: Traveling Salesman, computer algorithms, optimization

Chemis-Tree

Graphs are used in Chemistry to draw molecules.
(isobutane)
Note:

- This graph is connected. (Not true in general.)
- There are no cycles in this graph.

Connected graphs with no cycles are called trees.
Trees are some of the nicest graphs.
We will work to understand some of their properties.

To do well in this class:

- Come to class prepared.
- Print out and read over course notes.
- Read sections before class.
- Form good study groups.
- Discuss homework and classwork.
- Bounce proof ideas around.
- You will depend on this group.
- Put in the time.
- Three credits $=$ (at least) nine hours / week out of class.
- Homework stresses key concepts from class; learning takes time.
- Stay in contact.
- If you are confused, ask questions (in class and out).
- Don't fall behind in coursework or project.
- I need to understand your concerns.

All homeworks online; first one due next Wednesday.

What is a graph?

Definition: A graph G is a pair of sets (V, E), where

- V is the set of vertices.
- A vertex can be anything.
- E is the set of edges.
- An edge is an unordered pair of vertices from V.
[Sometimes we will write $V(G)$ and $E(G)$.]
Example. Let $G=(V, E)$, where
$V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$,
$E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$, and
$e_{1}=\left\{v_{1}, v_{2}\right\}, e_{2}=\left\{v_{2}, v_{3}\right\}$,
$e_{3}=\left\{v_{1}, v_{3}\right\}, e_{4}=\left\{v_{1}, v_{4}\right\}, e_{5}=\left\{v_{3}, v_{4}\right\}$.

- We often write $e_{1}=v_{1} v_{2}$ with the understanding that order does not matter.

Notation: \# vertices $=|V|=\ldots=\ldots$. $\#$ edges $=|E|=\ldots=\ldots$.

How to talk about a graph

We say v_{1} is adjacent to v_{2} if there is an edge between v_{1} and v_{2}. We also say v_{1} and v_{2} are neighbors.

Similarly, we would say that edges e_{1} and e_{2} are adjacent.
When talking about a vertex-edge pair, we will say that v_{1} is incident to/with e_{1} when v_{1} is an endpoint of e_{1}.

For now, we will only consider finite, simple graphs.

- G is finite means $|V|<\infty$. (Although infinite graphs do exist.)
- G is simple means that G has no multiple edges nor loops.
- A loop is an edge that connects a vertex to itself.
- Multiple edges occurs when the same unordered pair of vertices appears more than once in E.

When multiple edges are allowed (but not loops): called multigraphs. When loops (\& mult. edge) are allowed: called pseudographs.

Degree of a vertex

The degree of a vertex v is the number of edges incident with v, and denoted $\operatorname{deg}(v)$.
In our example,
\qquad , $\operatorname{deg}\left(v_{2}\right)=\ldots$, ,
$\operatorname{deg}\left(v_{3}\right)=$ \qquad , $\operatorname{deg}\left(v_{4}\right)=$ \qquad .

If $\operatorname{deg}(v)=0$, we call v an isolated vertex.
If $\operatorname{deg}(v)=1$, we call v an end vertex or leaf.
If $\operatorname{deg}(v)=k$ for all v, we call G a k-regular graph.
The degree sum of a graph is the sum of the degrees of all vertices.
Degree sum exploration:
Q. What is $\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)+$ $\operatorname{deg}\left(v_{3}\right)+\operatorname{deg}\left(v_{4}\right)$?
A. $\sum_{v \in V} \operatorname{deg}(v)=$
A. $m=$

How are these related?

Degree sum formula

Theorem 1.1.1. $\sum_{v \in V} \operatorname{deg}(v)=2 m$.
Proof. We count the number of vertex-edge incidences in two ways.
Vertex-centric: For one v, how many v-e incidences are there? \qquad .
So the total number of vertex-edge incidences in G is \qquad .
Edge-centric: For one e, how many $v-e$ incidences are there? \qquad .
So the total number of vertex-edge incidences in G is \qquad .

Since we have counted the same quantity in two different ways, the two values are equal.

Corollary: The degree sum of a graph is always even.

Degree sequence of a graph

Definition: The degree sequence for a graph G is the list of the degrees of its vertices in weakly decreasing order.

In our example above, the degree sequence is: \qquad .

Duh. Every simple graph has a degree sequence.
Question: Does every sequence have a simple graph?
Answer:

Degree sequence of a graph

Definition: A weakly decreasing sequence of non-negative numbers \mathcal{S} is graphic if there exists a graph that has \mathcal{S} as its degree sequence.

Question: How can we tell if a sequence \mathcal{S} is graphic?

- Find a graph with degree sequence \mathcal{S}.

OR: Use the Havel-Hakimi algorithm in Theorem 1.1.2.

- Initialization. Start with Sequence \mathcal{S}_{1}.
- Step 1. Remove the first number (call it s).
- Step 2. Subtract 1 from each of the next s numbers in the list.
- Step 3. Reorder the list if necessary into non-increasing order.

Call the resulting list Sequence \mathcal{S}_{2}.
Theorem 1.1.2. Sequence \mathcal{S}_{1} is graphic iff Sequence \mathcal{S}_{2} is graphic.

- Iterate this algorithm until either:
(a) It is easy to see \mathcal{S}_{2} is graphic. (b) \mathcal{S}_{2} has negative numbers.

Examples: 7765333110 and 6644442

Proof of the Havel-Hakimi algorithm

Notation: Define the degree sequences to be:

$$
\begin{aligned}
& \mathcal{S}_{1}=\left(s, t_{1}, t_{2}, \ldots, t_{s}, d_{1}, \ldots, d_{k}\right) . \\
& \mathcal{S}_{2}=\left(t_{1}-1, t_{2}-1, \ldots, t_{s}-1, d_{1}, \ldots, d_{k}\right) .
\end{aligned}
$$

Theorem: Sequence \mathcal{S}_{1} is graphic iff Sequence \mathcal{S}_{2} is graphic.
Proof. (\mathcal{S}_{2} graphic $\Rightarrow \mathcal{S}_{1}$ graphic) \quad Suppose that \mathcal{S}_{2} is graphic.
Therefore, there exists a graph G_{2} with degree sequence \mathcal{S}_{2}.
We will construct a graph G_{1} that has \mathcal{S}_{1} as its degree sequence.

Question: Can this argument work in reverse?

Proof of the Havel-Hakimi algorithm

Proof. (\mathcal{S}_{1} graphic $\Rightarrow \mathcal{S}_{2}$ graphic) \quad Suppose that \mathcal{S}_{1} is graphic.
Therefore, there exists a graph G_{1} with degree sequence \mathcal{S}_{1}.
We will construct a graph with degree sequence \mathcal{S}_{2} in stages.

Game plan:

$$
G_{1} \longrightarrow G_{2} \longrightarrow G_{3} \longrightarrow \cdots \longrightarrow G_{a}
$$

- Start with G_{1} which we know exists.
- At each stage, create a new graph G_{i} from G_{i-1} such that
- G_{i} has degree sequence \mathcal{S}_{1}.
- The vertex of degree s in G_{i} is adjacent to MORE of the highest degree vertices than G_{i-1}.
- After some number of iterations, the vertex of highest degree s in G_{a} will be adjacent to the next s highest degree vertices.
- Peel off vertex S to reveal a graph with degree sequence \mathcal{S}_{2}.

Proof of the Havel-Hakimi algorithm

Vertices $S, T_{1}, \ldots, T_{s}, D_{1}, \ldots, D_{k}$ have degrees $s, t_{1}, \ldots, t_{s}, d_{1}, \ldots, d_{k}$.
(a) Suppose S is not adjacent to all vertices of next highest degree (T_{1} through T_{s}).

Therefore, there exists a T_{i} to which S is not adjacent and a D_{j} to which S is adjacent.
(b) Because $\operatorname{deg}\left(T_{i}\right) \geq \operatorname{deg}\left(D_{j}\right)$, then there exists a vertex V such that $T_{i} V$ is an edge and $D_{j} V$ is not an edge.

(c) Replace edges $S D_{j}$ and $T_{i} V$ with edges $S T_{i}$ and $D_{j} V$.
(d) The degree sequence of the new graph is the same. (Why?) AND S is now adjacent to more T vertices. (Why?) Repeat as necessary.

