The crossing number of a graph

Some graphs are *almost* planar.

- If $K_{3,3}$ didn’t have that last edge, it would be planar!
The crossing number of a graph

Some graphs are *almost* planar.

► If $K_{3,3}$ didn’t have that last edge, it would be planar!

So we ask: How non-planar is it?

★ We will discuss **three** ways to answer this question.
The crossing number of a graph

Some graphs are *almost* planar.

- If $K_{3,3}$ didn’t have that last edge, it would be planar!

So we ask: How non-planar is it?

★ We will discuss **three** ways to answer this question.

Definition: The **crossing number** of a graph G, denoted $\text{cr}(G)$, is the minimum number of crossings in any simple drawing of G.
Some graphs are *almost* planar.

- If $K_{3,3}$ didn’t have that last edge, it would be planar!

So we ask: How non-planar is it?

★ We will discuss *three* ways to answer this question.

Definition: The *crossing number* of a graph G, denoted $cr(G)$, is the minimum number of crossings in any simple drawing of G.

- So if G is planar, $cr(G) = 0$, and if G is non-planar, $cr(G) \geq 1$.
The crossing number of a graph

Some graphs are *almost* planar.

- If $K_{3,3}$ didn’t have that last edge, it would be planar!

So we ask: How non-planar is it?

★ We will discuss **three** ways to answer this question.

Definition: The **crossing number** of a graph G, denoted $\text{cr}(G)$, is the minimum number of crossings in any simple drawing of G.

- So if G is planar, $\text{cr}(G) = 0$, and if G is non-planar, $\text{cr}(G) \geq 1$.
- To prove $\text{cr}(G) = 1$:
 - Prove G is non-planar (Kuratowski or otherwise) **and**
 - Find a drawing of G with only one crossing.
The crossing number of a graph

Some graphs are *almost* planar.

- If $K_{3,3}$ didn’t have that last edge, it would be planar!

So we ask: How non-planar is it?

- We will discuss **three** ways to answer this question.

Definition: The **crossing number** of a graph G, denoted $\text{cr}(G)$, is the minimum number of crossings in any simple drawing of G.

- So if G is planar, $\text{cr}(G) = 0$, and if G is non-planar, $\text{cr}(G) \geq 1$.

- To prove $\text{cr}(G) = 1$:
 - Prove G is non-planar (Kuratowski or otherwise) and
 - Find a drawing of G with only one crossing.

Example.
The crossing number of K_6

Theorem 9.1.4 The crossing number of K_6 is 3.
The crossing number of K_6

Theorem 9.1.4 The crossing number of K_6 is 3.

Proof. First, here is a drawing of K_6 with three crossings:

We conclude that $\text{cr}(K_6) \leq 3$.
The crossing number of K_6

Theorem 9.1.4 The crossing number of K_6 is 3.

Proof. First, here is a drawing of K_6 with three crossings:

We conclude that $\text{cr}(K_6) \leq 3$.

Claim: No simple drawing of K_6 has fewer crossings.
The crossing number of K_6

Theorem 9.1.4 The crossing number of K_6 is 3.

Proof. First, here is a drawing of K_6 with three crossings:

We conclude that $\text{cr}(K_6) \leq 3$.

Claim: No simple drawing of K_6 has fewer crossings.

- Suppose there exists a drawing of K_6 with two crossings.
- Both crossings involve four distinct vertices.
The crossing number of K_6

Theorem 9.1.4 The crossing number of K_6 is 3.

Proof. First, here is a drawing of K_6 with three crossings:

We conclude that $\text{cr}(K_6) \leq 3$.

Claim: No simple drawing of K_6 has fewer crossings.

- Suppose there exists a drawing of K_6 with two crossings.
- Both crossings involve four distinct vertices.
- Since K_6 has six vertices, there is a vertex v in both crossings.
- If we delete v, the resulting graph would have no crossings.
The crossing number of K_6

Theorem 9.1.4 The crossing number of K_6 is 3.

Proof. First, here is a drawing of K_6 with three crossings:

We conclude that $\text{cr}(K_6) \leq 3$.

Claim: No simple drawing of K_6 has fewer crossings.

- Suppose there exists a drawing of K_6 with two crossings.
- Both crossings involve four distinct vertices.
- Since K_6 has six vertices, there is a vertex v in both crossings.
- If we delete v, the resulting graph would have no crossings.
- This would give a plane drawing of K_5, a contradiction!

Therefore, $\text{cr}(K_6) = 3$.

The thickness of a graph

Definition: The thickness of a graph G, denoted $\theta(G)$, is the smallest number of planar subgraphs into which G can be decomposed. That is, find the optimal way to partition of the edge set of G into disjoint subsets, each of which is a planar graph.
The thickness of a graph

Definition: The **thick**ness of a graph G, denoted $\theta(G)$, is the smallest number of planar subgraphs into which G can be decomposed. That is, find the optimal way to partition of the edge set of G into disjoint subsets, each of which is a planar graph.

- So if G is planar, $\theta(G) = 1$, and if G is non-planar, $\text{cr}(G) \geq 2$.

The thickness of a graph

Definition: The thickness of a graph G, denoted $\theta(G)$, is the smallest number of planar subgraphs into which G can be decomposed. That is, find the optimal way to partition of the edge set of G into disjoint subsets, each of which is a planar graph.

- So if G is planar, $\theta(G) = 1$, and if G is non-planar, $cr(G) \geq 2$.

Example. $\theta(K_8) = 2$ since we know K_8 is nonplanar and below is a decomposition of K_8 into two planar subgraphs:
The thickness of a graph

Definition: The **thickness** of a graph G, denoted $\theta(G)$, is the smallest number of planar subgraphs into which G can be decomposed. That is, find the optimal way to partition of the edge set of G into disjoint subsets, each of which is a planar graph.

- So if G is planar, $\theta(G) = 1$, and if G is non-planar, $\text{cr}(G) \geq 2$.

Example. $\theta(K_8) = 2$ since we know K_8 is nonplanar and below is a decomposition of K_8 into two planar subgraphs:
Theorems about thickness

A simple bound on thickness is:

Theorem 9.2.1. If G has p vertices and q edges, then $\theta(G) \geq \frac{q}{3p-6}$.

A simple bound on thickness is:

Theorem 9.2.1. If G has p vertices and q edges, then $\theta(G) \geq \frac{q}{3p-6}$.

Proof. Suppose that $G = H_1 \cup H_2 \cup \cdots \cup H_{\theta(G)}$ is a decomposition of G into planar subgraphs H_i, with p vertices and q_i edges.

We know that each H_i must satisfy $q_i \leq 3p - 6$. Therefore

$$q = \sum_{i=1}^{\theta(G)} q_i \leq \sum_{i=1}^{\theta(G)} (3p - 6) = \theta(G)(3p - 6).$$
Theorems about thickness

A simple bound on thickness is:

Theorem 9.2.1. If G has p vertices and q edges, then $\theta(G) \geq \frac{q}{3p-6}$.

Proof. Suppose that $G = H_1 \cup H_2 \cup \cdots \cup H_{\theta(G)}$ is a decomposition of G into planar subgraphs H_i, with p vertices and q_i edges.

We know that each H_i must satisfy $q_i \leq 3p - 6$. Therefore

$$q = \sum_{i=1}^{\theta(G)} q_i \leq \sum_{i=1}^{\theta(G)} (3p - 6) = \theta(G)(3p - 6).$$

Similarly,

Theorem 9.2.2. If G is a graph with girth ≥ 4, then $\theta(G) \geq \frac{q}{2p-4}$.
Theorems about thickness

A simple bound on thickness is:

Theorem 9.2.1. If G has p vertices and q edges, then $\theta(G) \geq \frac{q}{3p-6}$.

Proof. Suppose that $G = H_1 \cup H_2 \cup \cdots \cup H_{\theta(G)}$ is a decomposition of G into planar subgraphs H_i, with p vertices and q_i edges.

We know that each H_i must satisfy $q_i \leq 3p - 6$. Therefore

$$q = \sum_{i=1}^{\theta(G)} q_i \leq \sum_{i=1}^{\theta(G)} (3p - 6) = \theta(G)(3p - 6).$$

Similarly,

Theorem 9.2.2. If G is a graph with girth ≥ 4, then $\theta(G) \geq \frac{q}{2p-4}$.

Fact: $\theta(K_n) = \begin{cases} \left\lfloor \frac{n + 7}{6} \right\rfloor & n \neq 9, 10 \\ 3 & n = 9, 10 \end{cases}$

Proved by Beineke, Harary, Vasak, Alekseev, Gonchakov
A planar graph can always be embedded on a sphere. \textit{That is:} it can be drawn without crossings on the surface of a sphere.

Nonplanar graphs can not be embedded on a plane (or sphere).
The genus of a graph

A planar graph can always be **embedded on** a sphere.
That is: it can be drawn without crossings on the surface of a sphere.

Nonplanar graphs can not be embedded on a plane (or sphere).
What about more complicated surfaces? Like a torus?
Example. We can embed K_5 on a torus. (Two ways to see.)
The genus of a graph

A planar graph can always be **embedded on** a sphere. *That is:* it can be drawn without crossings on the surface of a sphere.

Nonplanar graphs cannot be embedded on a plane (or sphere).

What about more complicated surfaces? Like a torus?

Example. We can embed K_5 on a torus. (Two ways to see.)

Example. We can even embed K_7 on a torus:
A planar graph can always be embedded on a sphere. *That is:* it can be drawn without crossings on the surface of a sphere.

Nonplanar graphs can not be embedded on a plane (or sphere). What about more complicated surfaces? Like a torus? **Example.** We can embed K_5 on a torus. (Two ways to see.)

Example. We can even embed K_7 on a torus:

However, we can’t embed K_8 on a torus.
The genus of a graph

A planar graph can always be **embedded on** a sphere.
That is: it can be drawn without crossings on the surface of a sphere.

Nonplanar graphs can not be embedded on a plane (or sphere).
What about more complicated surfaces? Like a torus?
Example. We can embed K_5 on a torus. (Two ways to see.)

Example. We can even embed K_7 on a torus:

However, we can’t embed K_8 on a torus. Perhaps on a surface of genus g?
The genus of a graph

Definition: The **genus** of a graph is the smallest g such that G can be embedded on a surface of genus g with no crossings.

- If G is planar, $\text{genus}(G) = 0$; if G is non-planar, $\text{genus}(G) \geq 1$.
The genus of a graph

Definition: The **genus** of a graph is the smallest g such that G can be embedded on a surface of genus g with no crossings.

- If G is planar, $\text{genus}(G) = 0$; if G is non-planar, $\text{genus}(G) \geq 1$.

Fact: (Ringel, Youngs, 1968) The genus of a complete graph is

$$\text{genus}(K_n) = \left\lceil \frac{(n - 3)(n - 4)}{12} \right\rceil$$
The genus of a graph

Definition: The **genus** of a graph is the smallest g such that G can be embedded on a surface of genus g with no crossings.

- If G is planar, $\text{genus}(G) = 0$; if G is non-planar, $\text{genus}(G) \geq 1$.

Fact: (Ringel, Youngs, 1968) The genus of a complete graph is

$$\text{genus}(K_n) = \left\lceil \frac{(n-3)(n-4)}{12} \right\rceil$$

Embedding on higher genus surfaces changes Euler’s formula!

Theorem. Let G be a graph of genus g. Suppose you have an embedding of G on a surface of genus g with no crossings. If r is the number of regions, then $p - q + r = 2 - 2g$.

Example. In our embedding of K_5 on the torus (genus 1):
Planarity statistics for complete graphs:

<table>
<thead>
<tr>
<th>Statistic</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>$cr(K_n)$</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>18</td>
<td>36</td>
<td>60</td>
<td>100</td>
<td>150</td>
<td>225</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$\theta(K_n)$</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>genus(K_n)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>13</td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>
Complete graphs

Planarity statistics for complete graphs:

<table>
<thead>
<tr>
<th>Statistic</th>
<th>4 5 6 7 8 9 10 11 12 13 14 15 16 17 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>(cr(K_n))</td>
<td>0 1 3 9 18 36 60 100 150 225</td>
</tr>
<tr>
<td>(\theta(K_n))</td>
<td>1 2 2 2 2 3 3 3 3 3 3 3 4 4</td>
</tr>
<tr>
<td>(\text{genus}(K_n))</td>
<td>0 1 1 1 2 3 4 5 6 8 10 11 13 16 18</td>
</tr>
</tbody>
</table>

The crossing number of a complete graph is unknown for \(n \geq 13 \).

Conjecture. (Guy, 1972) The crossing number of a complete graph is

\[
 cr(G) = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor
\]

The cases \(cr(K_{11}) = 100 \) and \(cr(K_{12}) = 150 \) were proved in 2007.