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� Path graph Pn: The path graph Pn has n + 1 vertices,
V = {v0, v1, . . . , vn} and n edges,
E = {v0v1, v1v2, . . . , vn−1vn}.

� The length of a path is the number of edges in the path.

� Cycle graph Cn: The cycle graph Cn has n vertices,
V = {v1, . . . , vn} and n edges,
E = {v1v2, v2v3, . . . , vn−1vn, vnv1}.

We often try to find and/or count paths and cycles in a graph.

Question: What is the smallest path? Smallest cycle?
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V = {v1, . . . , vn} and has an edge connecting every pair of
distinct vertices, for a total of edges.
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Families of Graphs

� Complete graph Kn: The complete graph Kn has n edges,
V = {v1, . . . , vn} and has an edge connecting every pair of
distinct vertices, for a total of edges.

Definition: A bipartite graph is a graph where the vertex set can
be broken into two parts such that there are no edges between
vertices in the same part.

� Complete bipartite graph Km,n: The complete bipartite
graph Km,n has m + n vertices V = {v1, . . . , vm,w1, . . . ,wn}
and an edge connecting each v vertex to each w vertex.
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Families of Graphs

� Wheel graph Wn: The wheel graph Wn has n + 1 vertices
V = {v0, v1, . . . , vn}. Arrange and connect the last n vertices
in a cycle (the rim of the wheel). Place v0 in the center (the
hub), and connect it to every other vertex.
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Families of Graphs

� Wheel graph Wn: The wheel graph Wn has n + 1 vertices
V = {v0, v1, . . . , vn}. Arrange and connect the last n vertices
in a cycle (the rim of the wheel). Place v0 in the center (the
hub), and connect it to every other vertex.

� Star graph Stn: The star graph Stn has n + 1 vertices
V = {v0, v1, . . . , vn} and n edges E = {v0v1, v0v2, . . . , v0vn}.

� Cube graph �n: The cube graph in n dimensions, �n, has 2n

vertices. We index the vertices by binary numbers of length n.
Two vertices are adjacent when their binary numbers differ by
exactly one digit.
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Special Graphs

Two graphs we will see on a consistant basis are:

Petersen graph P Grötzsch graph Gr



Dictionary of Graphs 19

Special Graphs

Definition: The platonic solids are the tetrahedron, cube,
octahedron, icosahedron, and dodecahedron. They are the only
regular convex polyhedra made of regular polygons.
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represent the edges of the polyhedron.
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Special Graphs

Definition: The platonic solids are the tetrahedron, cube,
octahedron, icosahedron, and dodecahedron. They are the only
regular convex polyhedra made of regular polygons.

Definition: The Schlegel diagram of a polyhedron is a planar 2D
graph that represents a 3D object, where vertices of the graph
represent vertices of the polyhedron, and edges of the graph
represent the edges of the polyhedron.

� The Platonic graphs are the Schlegel diagrams of the five
platonic solids.
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When are two graphs the same?

Two graphs G1 and G2 are equal (G1 = G2) if they have the exact
same vertex sets and edge sets.

The graphs G1 and G2 are isomorphic (G1 ≈ G2) if there exists a
bijection on the vertex sets, ϕ : V (G1) → V (G2) such that

vivj is an edge of G1 iff ϕ(vi )ϕ(vj ) is an edge of G2.

In this course, we will spend a large amount of time trying to
figure out whether two given graphs are the same.

Side note: The set of homomorphisms of a graph (isomorphisms
into itself) is a measure of its symmetry. Example.
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Simple operations on graphs

The union of two graphs G1 = (V1,E1) and G2 = (V2,E2) can
mean two different things:

� When the vertex sets are different, the (disjoint) union H of
G1 and G2 is formed by placing the graphs side by side. In this
case, H = (V1 ∪ V2,E1 ∪ E2).

� When the vertex sets are the same, then the (edge) union H
of G1 and G2 contains every edge of both E1 and E2. In this
case, H = (V ,E1 ∪ E2).

The complement G c or G of a graph G = (V ,E ) is a graph with
vertex set V and whose edge set contains all edges NOT in G .

Consequence: Suppose G = (V ,E1) and G c = (V ,E2). Then
E1 ∩ E2 = ∅ and E1 ∪ E2 = E (K|V |). (Recall Kn: complete graph.)
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a vertex of G , and where every edge of H is an edge of G .
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Subgraphs

A subgraph H of a graph G is a graph where every vertex of H is
a vertex of G , and where every edge of H is an edge of G .
� If edge e of G is in H, then the endpoints of e must also be in H.

A subgraph H is a proper subgraph if H �= G .

If G1 and G2 are two graphs, we say that G1 contains G2 if there
exists a subgraph H of G1 such that H is isomorphic to G2.

Example. Show that the wheel W6 contains a cycle of length 3, 4,
5, 6, and 7.
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Induced Subgraphs

For a graph G = (V ,E ) and any subset W ⊆ V (G ),
we can define the subgraph of G induced by W .

Define H:

� V (H) = W
� E (H) = edges in E (G ) that have endpoints exclusively in W .

Any graph that could be defined in this way is called an
induced subgraph of G .

Induced subgraphs of G are always subgraphs of G , but not vice versa.


