Planarity

Up until now, graphs have been completely abstract.
In Topological Graph Theory, it matters how the graphs are drawn.

- Do the edges cross?
- Are there knots in the graph structure?

Planarity

Up until now, graphs have been completely abstract.
In Topological Graph Theory, it matters how the graphs are drawn.

- Do the edges cross?
- Are there knots in the graph structure?

Definition: A drawing of a graph G is a pictorial representation of G in the plane as points and line segments. The line segments must be simple curves, which means no intersections are allowed.

Definition: A plane drawing of a graph G is a drawing of the graph in the plane with no crossings. Otherwise, G is nonplanar.

Planarity

Up until now, graphs have been completely abstract.
In Topological Graph Theory, it matters how the graphs are drawn.

- Do the edges cross?
- Are there knots in the graph structure?

Definition: A drawing of a graph G is a pictorial representation of G in the plane as points and line segments. The line segments must be simple curves, which means no intersections are allowed.

Definition: A plane drawing of a graph G is a drawing of the graph in the plane with no crossings. Otherwise, G is nonplanar.

Definition: A planar graph is a graph that has a plane drawing.
Example. K_{4} is a planar graph because is a plane drawing of K_{4}.

Vertices, Edges, and Faces

Definition: In a plane drawing, edges divide the plane into regions, or faces.

There will always be one face with infinite area. This is called the outside face.

Vertices, Edges, and Faces

Definition: In a plane drawing, edges divide the plane into regions, or faces.

There will always be one face with infinite area. This is called the outside face.

Notation. Let $p=\#$ of vertices, $q=\#$ of edges, $r=\#$ of regions. Compute the following data:

Graph	p	q	r	
Tetrahedron				
Cube				
Octahedron				
Dodecahedron				
Icosahedron				

In 1750, Euler noticed that \qquad in each of these examples.

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is connected, then in a plane drawing of $G, p-q+r=2$.

Proof (by induction on the number of cycles)
Base Case: If G is a tree, there is one region, so

$$
p-q+r=p-(p-1)+1=2
$$

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is connected, then in a plane drawing of $G, p-q+r=2$.

Proof (by induction on the number of cycles)
Base Case: If G is a tree, there is one region, so

$$
p-q+r=p-(p-1)+1=2
$$

Inductive Step: Suppose that for all plane drawings with fewer than k cycles, $p-q+r=2$, we wish to prove that in a plane drawing of a graph G with exactly k cycles, $p-q+r=2$ also holds.

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is connected, then in a plane drawing of $G, p-q+r=2$.

Proof (by induction on the number of cycles)
Base Case: If G is a tree, there is one region, so

$$
p-q+r=p-(p-1)+1=2
$$

Inductive Step: Suppose that for all plane drawings with fewer than k cycles, $p-q+r=2$, we wish to prove that in a plane drawing of a graph G with exactly k cycles, $p-q+r=2$ also holds.
Let C be a cycle in G. Let e be any edge in C, then e is adjacent to two different regions, one inside C and one outside C.

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is connected, then in a plane drawing of $G, p-q+r=2$.

Proof (by induction on the number of cycles)
Base Case: If G is a tree, there is one region, so

$$
p-q+r=p-(p-1)+1=2
$$

Inductive Step: Suppose that for all plane drawings with fewer than k cycles, $p-q+r=2$, we wish to prove that in a plane drawing of a graph G with exactly k cycles, $p-q+r=2$ also holds.
Let C be a cycle in G. Let e be any edge in C, then e is adjacent to two different regions, one inside C and one outside C.
$G \backslash e$ has fewer cycles than G, and one fewer region. The inductive hypothesis holds for $G \backslash e$, giving

Maximal Planar Graphs

A graph with "too many" edges isn't planar; how many is too many?
Goal: Find a numerical characterization of "too many"
Definition: A planar graph is called maximal planar if adding an edge between any two non-adjacent vertices results in a non-planar graph.
Examples. Octahedron $\quad K_{4} \quad K_{5} \backslash e$

Maximal Planar Graphs

A graph with "too many" edges isn't planar; how many is too many?
Goal: Find a numerical characterization of "too many"
Definition: A planar graph is called maximal planar if adding an edge between any two non-adjacent vertices results in a non-planar graph.
Examples. Octahedron $\quad K_{4} \quad K_{5} \backslash e$

What do we notice about these graphs?

Numerical Conditions on Planar Graphs

- Every face of a maximal planar graph is a triangle!

If not,

Numerical Conditions on Planar Graphs

- Every face of a maximal planar graph is a triangle!

If not,

Theorem 8.1.2. If G is maximal planar and $p \geq 3$, then $q=3 p-6$.
Proof. Consider any plane drawing of G.
Let $p=\#$ of vertices, $q=\#$ of edges, and $r=\#$ of regions.
We will count the number of face-edge incidences in two ways:

Numerical Conditions on Planar Graphs

- Every face of a maximal planar graph is a triangle!

If not,

Theorem 8.1.2. If G is maximal planar and $p \geq 3$, then $q=3 p-6$.
Proof. Consider any plane drawing of G.
Let $p=\#$ of vertices, $q=\#$ of edges, and $r=\#$ of regions.
We will count the number of face-edge incidences in two ways:
From a face-centric POV, the number of face-edge incidences is

Numerical Conditions on Planar Graphs

- Every face of a maximal planar graph is a triangle!

If not,

Theorem 8.1.2. If G is maximal planar and $p \geq 3$, then $q=3 p-6$.
Proof. Consider any plane drawing of G.
Let $p=\#$ of vertices, $q=\#$ of edges, and $r=\#$ of regions.
We will count the number of face-edge incidences in two ways:
From a face-centric POV, the number of face-edge incidences is
From an edge-centric POV, the number of face-edge incidences is

Numerical Conditions on Planar Graphs

- Every face of a maximal planar graph is a triangle!

If not,

Theorem 8.1.2. If G is maximal planar and $p \geq 3$, then $q=3 p-6$.
Proof. Consider any plane drawing of G.
Let $p=\#$ of vertices, $q=\#$ of edges, and $r=\#$ of regions.
We will count the number of face-edge incidences in two ways:
From a face-centric POV, the number of face-edge incidences is
From an edge-centric POV, the number of face-edge incidences is
Now substitute into Euler's formula:

Numerical Conditions on Planar Graphs

- Every face of a maximal planar graph is a triangle!

If not,

Theorem 8.1.2. If G is maximal planar and $p \geq 3$, then $q=3 p-6$.
Proof. Consider any plane drawing of G.
Let $p=\#$ of vertices, $q=\#$ of edges, and $r=\#$ of regions.
We will count the number of face-edge incidences in two ways:
From a face-centric POV, the number of face-edge incidences is
From an edge-centric POV, the number of face-edge incidences is
Now substitute into Euler's formula:

Do we need $p \geq 3$?

Numerical Conditions on Planar Graphs

Corollary 8.1.3. Every planar graph with $p \geq 3$ vertices has at most $3 p-6$ edges.

- Start with any planar graph G with p vertices and q edges.
- Add edges to G until it is maximal planar. (with $Q \geq q$ edges.)
- This resulting graph satisfies $Q=3 p-6$; hence $q \leq 3 p-6$.

Numerical Conditions on Planar Graphs

Corollary 8.1.3. Every planar graph with $p \geq 3$ vertices has at most $3 p-6$ edges.

- Start with any planar graph G with p vertices and q edges.
- Add edges to G until it is maximal planar. (with $Q \geq q$ edges.)
- This resulting graph satisfies $Q=3 p-6$; hence $q \leq 3 p-6$.

Theorem 8.1.4. The graph K_{5} is not planar.
Proof.

Numerical Conditions on Planar Graphs

Definition: The girth $g(G)$ of a graph G is the smallest cycle size. Example.

Numerical Conditions on Planar Graphs

Definition: The girth $g(G)$ of a graph G is the smallest cycle size. Example.

Theorem 8.1.5.* If G is planar with girth ≥ 4, then $q \leq 2 p-4$.

Numerical Conditions on Planar Graphs

Definition: The girth $g(G)$ of a graph G is the smallest cycle size. Example.

Theorem 8.1.5.* If G is planar with girth ≥ 4, then $q \leq 2 p-4$.
Proof. Modify the above proof-instead of $3 r=2 q$, we know $4 r \leq 2 q$. This implies that

$$
2=p-q+r \leq p-q+\frac{2 q}{4}=p-\frac{q}{2} .
$$

Therefore, $q \leq 2 p-4$.

Numerical Conditions on Planar Graphs

Definition: The girth $g(G)$ of a graph G is the smallest cycle size. Example.

Theorem 8.1.5.* If G is planar with girth ≥ 4, then $q \leq 2 p-4$.
Proof. Modify the above proof-instead of $3 r=2 q$, we know $4 r \leq 2 q$. This implies that

$$
2=p-q+r \leq p-q+\frac{2 q}{4}=p-\frac{q}{2} .
$$

Therefore, $q \leq 2 p-4$.
Theorem 8.1.5. If G is planar and bipartite, then $q \leq 2 p-4$.
Theorem 8.1.6. $K_{3,3}$ is not planar.

Numerical Conditions on Planar Graphs

Definition: The girth $g(G)$ of a graph G is the smallest cycle size. Example.

Theorem 8.1.5.* If G is planar with girth ≥ 4, then $q \leq 2 p-4$.
Proof. Modify the above proof-instead of $3 r=2 q$, we know $4 r \leq 2 q$. This implies that

$$
2=p-q+r \leq p-q+\frac{2 q}{4}=p-\frac{q}{2} .
$$

Therefore, $q \leq 2 p-4$.
Theorem 8.1.5. If G is planar and bipartite, then $q \leq 2 p-4$.
Theorem 8.1.6. $K_{3,3}$ is not planar.
Theorem 8.1.7. Every planar graph has a vertex with degree ≤ 5.
Proof.

Dual Graphs

Definition: Given a plane drawing of a planar graph G, the dual graph $D(G)$ of G is a graph with vertices corresponding to the regions of G. Two vertices are connected by an edge each time the two regions share an edge as a border.

Dual Graphs

Definition: Given a plane drawing of a planar graph G, the dual graph $D(G)$ of G is a graph with vertices corresponding to the regions of G. Two vertices are connected by an edge each time the two regions share an edge as a border.

- The dual graph of a simple graph may not be simple.
- Two regions may be adjacent multiple times.

Dual Graphs

Definition: Given a plane drawing of a planar graph G, the dual graph $D(G)$ of G is a graph with vertices corresponding to the regions of G. Two vertices are connected by an edge each time the two regions share an edge as a border.

- The dual graph of a simple graph may not be simple.
- Two regions may be adjacent multiple times.
- G and $D(G)$ have the same number of edges.

Dual Graphs

Definition: Given a plane drawing of a planar graph G, the dual graph $D(G)$ of G is a graph with vertices corresponding to the regions of G. Two vertices are connected by an edge each time the two regions share an edge as a border.

- The dual graph of a simple graph may not be simple.
- Two regions may be adjacent multiple times.
- G and $D(G)$ have the same number of edges.

Definition: A graph G is self-dual if G is isomorphic to $D(G)$.

Maps

Definition: A map is a plane drawing of a connected, bridgeless, planar multigraph. If the map is 3 -regular, then it is a normal map.

Definition: In a map, the regions are called countries. Countries may share several edges.

Maps

Definition: A map is a plane drawing of a connected, bridgeless, planar multigraph. If the map is 3 -regular, then it is a normal map.

Definition: In a map, the regions are called countries. Countries may share several edges.

Definition: A proper coloring of a map is an assignment of colors to each country so that no two adjacent countries are the same color.

Question. How many colors are necessary to properly color a map?

Proper Map Colorings

Lemma 8.2.2. If M is a map that is a union of simple closed curves, the regions can be colored by two colors.

Proper Map Colorings

Lemma 8.2.2. If M is a map that is a union of simple closed curves, the regions can be colored by two colors.

Proof. Color the regions R of M as follows:
$\left\{\begin{array}{ll}\text { black } & \text { if } R \text { is enclosed in an odd number of curves } \\ \text { white } & \text { if } R \text { is enclosed in an even number of curves }\end{array}\right\}$.

Proper Map Colorings

Lemma 8.2.2. If M is a map that is a union of simple closed curves, the regions can be colored by two colors.

Proof. Color the regions R of M as follows:
$\left\{\begin{array}{ll}\text { black } & \text { if } R \text { is enclosed in an odd number of curves } \\ \text { white } & \text { if } R \text { is enclosed in an even number of curves }\end{array}\right\}$.
This is a proper coloring of M. Any two adjacent regions are on opposite sides of a closed curve, so the number of curves in which each is enclosed is off by one.

The Four Color Theorem

Lemma 8.2.6. (The Four Color Theorem)
Every normal map has a proper coloring by four colors.
Proof. Very hard.
\star This is the wrong object \star

The Four Color Theorem

Lemma 8.2.6. (The Four Color Theorem)
Every normal map has a proper coloring by four colors.
Proof. Very hard.
\star This is the wrong object \star
Theorem. If G is a plane drawing of a maximal planar graph, then its dual graph $D(G)$ is a normal map.

- Every face of G is a triangle \rightsquigarrow
- G is connected \rightsquigarrow
- G is planar \rightsquigarrow

The Four Color Theorem

Assuming Lemma 8.2.6,

$$
G \text { is maximal planar } \Rightarrow D(G) \text { is a normal map }
$$

\Rightarrow countries of $D(G)$ 4-colorable
\Rightarrow vertices of G 4-colorable
$\Rightarrow \quad \chi(G) \leq 4$
This proves:
Theorem 8.2.8. If G is maximal planar, then $\chi(G) \leq 4$.

The Four Color Theorem

Assuming Lemma 8.2.6,
G is maximal planar $\Rightarrow D(G)$ is a normal map \Rightarrow countries of $D(G)$ 4-colorable
\Rightarrow vertices of G 4-colorable $\Rightarrow \quad \chi(G) \leq 4$
This proves:
Theorem 8.2.8. If G is maximal planar, then $\chi(G) \leq 4$.
Since every planar graph is a subgraph of a maximal planar graph, Lemma C implies:

Theorem 8.2.9. If G is a planar graph, then $\chi(G) \leq 4$.

The Four Color Theorem

Assuming Lemma 8.2.6,
G is maximal planar $\Rightarrow D(G)$ is a normal map \Rightarrow countries of $D(G)$ 4-colorable
\Rightarrow vertices of G 4-colorable $\Rightarrow \quad \chi(G) \leq 4$
This proves:
Theorem 8.2.8. If G is maximal planar, then $\chi(G) \leq 4$.
Since every planar graph is a subgraph of a maximal planar graph, Lemma C implies:

Theorem 8.2.9. If G is a planar graph, then $\chi(G) \leq 4$.

* History *

