Planarity

Up until now, graphs have been completely abstract. In Topological Graph Theory, it matters how the graphs are drawn.

- ▶ Do the edges cross?
- Are there knots in the graph structure?

Definition: A drawing of a graph G is a pictorial representation of G in the plane as points and line segments. The line segments must be **simple curves**, which means no intersections are allowed.

Definition: A **plane drawing** of a graph G is a drawing of the graph in the plane with no crossings. Otherwise, G is **nonplanar**.

Definition: A planar graph is a graph that has a plane drawing.

Example. K_4 is a planar graph because is a plane drawing of K_4 .

Vertices, Edges, and Faces

Definition: In a plane drawing, edges divide the plane into **regions**, or **faces**.

There will always be one face with infinite area. This is called the **outside face**.

Notation. Let p = # of vertices, q = # of edges, r = # of regions. Compute the following data:

Graph	р	q	r		
Tetrahedron					
Cube					
Octahedron					
Dodecahedron					
Icosahedron					
In 1750. Euler noticed that					in each of these examples.

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is connected, then in a plane drawing of G, p - q + r = 2.

Proof (by induction on the number of cycles) **Base Case**: If G is a tree, there is one region, so p - q + r = p - (p - 1) + 1 = 2.

Inductive Step: Suppose that for all plane drawings with fewer than k cycles, p - q + r = 2, we wish to prove that in a plane drawing of a graph G with exactly k cycles, p - q + r = 2 also holds.

Let C be a cycle in G. Let e be any edge in C, then e is adjacent to two different regions, one inside C and one outside C.

 $G\setminus e$ has fewer cycles than G, and one fewer region. The inductive hypothesis holds for $G\setminus e,$ giving

Maximal Planar Graphs

A graph with "too many" edges isn't planar; how many is too many?

Goal: Find a numerical characterization of "too many"

Definition: A planar graph is called **maximal planar** if adding an edge between any two non-adjacent vertices results in a non-planar graph.

Examples. Octahedron K_4 $K_5 \setminus e$

What do we notice about these graphs?

Numerical Conditions on Planar Graphs

Every face of a maximal planar graph is a triangle!
If not,

Theorem 8.1.2. If G is maximal planar and $p \ge 3$, then q = 3p - 6. *Proof.* Consider any plane drawing of G. Let p = # of vertices, q = # of edges, and r = # of regions. We will count the number of face-edge incidences in two ways: From a face-centric POV, the number of face-edge incidences is From an edge-centric POV, the number of face-edge incidences is

Now substitute into Euler's formula:

Do we need $p \ge 3$?

Numerical Conditions on Planar Graphs

Corollary 8.1.3. Every planar graph with $p \ge 3$ vertices has at most 3p - 6 edges.

- ▶ Start with any planar graph *G* with *p* vertices and *q* edges.
- Add edges to G until it is maximal planar. (with $Q \ge q$ edges.)
- This resulting graph satisfies Q = 3p 6; hence $q \le 3p 6$.

Theorem 8.1.4. The graph K_5 is not planar.

Proof.

Numerical Conditions on Planar Graphs

Definition: The **girth** g(G) of a graph G is the smallest cycle size. *Example.*

Theorem 8.1.5.* If G is planar with girth ≥ 4 , then $q \leq 2p - 4$.

Proof. Modify the above proof—instead of 3r = 2q, we know $4r \le 2q$. This implies that

$$2 = p - q + r \le p - q + \frac{2q}{4} = p - \frac{q}{2}.$$

Therefore, $q \leq 2p - 4$.

Theorem 8.1.5. If G is planar and bipartite, then $q \le 2p - 4$. Theorem 8.1.6. $K_{3,3}$ is not planar.

Theorem 8.1.7. Every planar graph has a vertex with degree \leq 5. *Proof.*

Dual Graphs

Dual Graphs

Definition: Given a plane drawing of a planar graph G, the **dual** graph D(G) of G is a graph with vertices corresponding to the regions of G. Two vertices are connected by an edge each time the two regions share an edge as a border.

The dual graph of a simple graph may not be simple.

Two regions may be adjacent multiple times.

• G and D(G) have the same number of edges.

Definition: A graph G is **self-dual** if G is isomorphic to D(G).

Maps

Definition: A *map* is a plane drawing of a connected, bridgeless, planar multigraph. If the map is 3-regular, then it is a **normal map**.

Definition: In a map, the regions are called **countries**. Countries may share several edges.

Definition: A **proper coloring** of a map is an assignment of colors to each country so that no two adjacent countries are the same color. *Question.* How many colors are necessary to properly color a map?

Proper Map Colorings

Lemma 8.2.2. If M is a map that is a union of simple closed curves, the regions can be colored by two colors.

Proof. Color the regions *R* of *M* as follows:

 $\left\{ \begin{array}{ll} \text{black} & \text{if } R \text{ is enclosed in an odd number of curves} \\ \text{white} & \text{if } R \text{ is enclosed in an even number of curves} \end{array} \right\}.$ This is a proper coloring of M. Any two adjacent regions are on opposite sides of a closed curve, so the number of curves in which each is enclosed is off by one.

The Four Color Theorem

Lemma 8.2.6. (The Four Color Theorem) Every normal map has a proper coloring by four colors.

Proof. Very hard.

 \star This is the wrong object \star

Theorem. If G is a plane drawing of a maximal planar graph, then its dual graph D(G) is a normal map.

- Every face of G is a triangle \rightsquigarrow
- ▶ G is connected \rightsquigarrow
- ▶ G is planar \rightsquigarrow

The Four Color Theorem - §8.2

The Four Color Theorem

Assuming Lemma 8.2.6,

G is maximal planar =

 $\begin{array}{ll} \Rightarrow & D(G) \text{ is a normal map} \\ \Rightarrow & \text{countries of } D(G) \text{ 4-colorable} \\ \Rightarrow & \text{vertices of } G \text{ 4-colorable} \\ \Rightarrow & \chi(G) \leq 4 \end{array}$

This proves

Theorem 8.2..8 If G is maximal planar, then $\chi(G) \leq 4$.

Since every planar graph is a subgraph of a maximal planar graph, Lemma C implies:

Theorem 8.2.9. If G is a planar graph, then $\chi(G) \leq 4$.

★ History ★