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Minimum-weight spanning trees

Motivation: Create a connected network as cheaply as possible.

� Think: Setting up electrical grid or road network.

� Some connections are cheaper than others.

� Only need to minimally connect the vertices.

Definition: A weighted graph consists of a graph G = (V ,E )
and weight function w : E → R defined on the edges of G .
The weight of a subgraph H of G is the sum of the edges in H.
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Definition: For a graph G , a spanning tree T is a subgraph of G
which is a tree and contains every vertex of G .
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Definition: For a graph G , a spanning tree T is a subgraph of G
which is a tree and contains every vertex of G .

Goal: For a weighted graph G , find a minimum-weight spanning tree.
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Kruskal’s algorithm

Kruskal’s Algorithm finds a minimum-weight spanning tree in a
weighted graph.

1 Initialization: Order the edges from lowest to highest weight:

w(e1) ≤ w(e2) ≤ w(e3) ≤ · · · ≤ w(ek).

2 Step 1: Define T = {e1} and grow the tree as follows:
3 Step i : Determine if adding ei to T would create a cycle.

� If not, add ei to the set T .
� If so, do nothing.

If you have a spanning tree, STOP. You have a m.w.s.t.
Otherwise, continue onto step i + 1.
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Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:
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Notes on Kruskal’s algorithm

� Proof of correctness similar to homework. Must additionally
verify that the spanning tree is indeed minimum-weight.

� Kruskal’s algorithm is an example of a greedy algorithm.
(It chooses the cheapest edge at each point.)

� Greedy algorithms don’t always work.
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The traveling salesman problem

Motivation: Visit all nodes and return home as cheaply as possible.

� Least cost trip flying between five major cities.
� Optimal routes for delivering mail, collecting garbage.
� Finding a trip to all buildings on campus, return.

Goal: Find a minimum-weight Hamiltonian cycle in a weighted graph.
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We can not use a greedy algorithm to find this TSP tour!
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Recall. The triangle inequality says that if x , y , and z are
vertices, then wt(xy) + wt(yz) ≤ wt(xz).
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The traveling salesman problem

� It is hard to find an optimum solution.

� Goal: Create an easy-to-find pretty good solution.

Theorem. When the edge weights satisfy the triangle inequality,
the tree shortcut algorithm finds a tour that costs at most twice
the optimum tour.

Recall. The triangle inequality says that if x , y , and z are
vertices, then wt(xy) + wt(yz) ≤ wt(xz).

Example: Euclidean distances

Non-example: Airfares
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Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour

1 Find a minimum-weight spanning tree (Use Kruskal’s Algorithm)
2 Walk in a circuit around the edges of the tree.
3 Take shortcuts to find a tour.
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Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour

1 Find a minimum-weight spanning tree (Use Kruskal’s Algorithm)
2 Walk in a circuit around the edges of the tree.
3 Take shortcuts to find a tour.
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Proof of theorem

Theorem. When the edge weights satisfy the triangle inequality,
the tree shortcut algorithm finds a tour that costs at most twice
the optimum tour.

Proof. Define:

� TSPA: TSP tour from shortcutting spanning tree

� CIRCA: Circuit constructed by doubling spanning tree

� MST : Minimum-weight spanning tree

� TSP∗: Minimum-weight TSP tour

Then,

wt(TSPA) ≤ wt(CIRCA) = 2wt(MST ) ≤ 2wt(TSP∗).


