
Spanning Trees — §7.1 130

Minimum-weight spanning trees

Motivation: Create a connected network as cheaply as possible.

� Think: Setting up electrical grid or road network.



Spanning Trees — §7.1 130

Minimum-weight spanning trees

Motivation: Create a connected network as cheaply as possible.

� Think: Setting up electrical grid or road network.

� Some connections are cheaper than others.



Spanning Trees — §7.1 130

Minimum-weight spanning trees

Motivation: Create a connected network as cheaply as possible.

� Think: Setting up electrical grid or road network.

� Some connections are cheaper than others.

� Only need to minimally connect the vertices.



Spanning Trees — §7.1 130

Minimum-weight spanning trees

Motivation: Create a connected network as cheaply as possible.

� Think: Setting up electrical grid or road network.

� Some connections are cheaper than others.

� Only need to minimally connect the vertices.

Definition: A weighted graph consists of a graph G = (V ,E )
and weight function w : E → R defined on the edges of G .
The weight of a subgraph H of G is the sum of the edges in H.

Example.
2

4

7
2 9

3
3 5

5

6

3

7

a b c

f

h

d

g

e

2

4

7
2 9

3
3 5

5

6

3

7

a b c

f

h

d

g

e

2

4

7
2 9

3
3 5

5

6

3

7

a b c

f

h

d

g

e



Spanning Trees — §7.1 130

Minimum-weight spanning trees

Motivation: Create a connected network as cheaply as possible.

� Think: Setting up electrical grid or road network.

� Some connections are cheaper than others.

� Only need to minimally connect the vertices.

Definition: A weighted graph consists of a graph G = (V ,E )
and weight function w : E → R defined on the edges of G .
The weight of a subgraph H of G is the sum of the edges in H.

Example.
2

4

7
2 9

3
3 5

5

6

3

7

a b c

f

h

d

g

e

2

4

7
2 9

3
3 5

5

6

3

7

a b c

f

h

d

g

e

2

4

7
2 9

3
3 5

5

6

3

7

a b c

f

h

d

g

e

Definition: For a graph G , a spanning tree T is a subgraph of G
which is a tree and contains every vertex of G .



Spanning Trees — §7.1 130

Minimum-weight spanning trees

Motivation: Create a connected network as cheaply as possible.

� Think: Setting up electrical grid or road network.

� Some connections are cheaper than others.

� Only need to minimally connect the vertices.

Definition: A weighted graph consists of a graph G = (V ,E )
and weight function w : E → R defined on the edges of G .
The weight of a subgraph H of G is the sum of the edges in H.

Example.
2

4

7
2 9

3
3 5

5

6

3

7

a b c

f

h

d

g

e

2

4

7
2 9

3
3 5

5

6

3

7

a b c

f

h

d

g

e

2

4

7
2 9

3
3 5

5

6

3

7

a b c

f

h

d

g

e

Definition: For a graph G , a spanning tree T is a subgraph of G
which is a tree and contains every vertex of G .

Goal: For a weighted graph G , find a minimum-weight spanning tree.



Spanning Trees — §7.1 131

Kruskal’s algorithm

Kruskal’s Algorithm finds a minimum-weight spanning tree in a
weighted graph.

1 Initialization: Order the edges from lowest to highest weight:

w(e1) ≤ w(e2) ≤ w(e3) ≤ · · · ≤ w(ek).



Spanning Trees — §7.1 131

Kruskal’s algorithm

Kruskal’s Algorithm finds a minimum-weight spanning tree in a
weighted graph.

1 Initialization: Order the edges from lowest to highest weight:

w(e1) ≤ w(e2) ≤ w(e3) ≤ · · · ≤ w(ek).

2 Step 1: Define T = {e1} and grow the tree as follows:



Spanning Trees — §7.1 131

Kruskal’s algorithm

Kruskal’s Algorithm finds a minimum-weight spanning tree in a
weighted graph.

1 Initialization: Order the edges from lowest to highest weight:

w(e1) ≤ w(e2) ≤ w(e3) ≤ · · · ≤ w(ek).

2 Step 1: Define T = {e1} and grow the tree as follows:
3 Step i : Determine if adding ei to T would create a cycle.

� If not, add ei to the set T .
� If so, do nothing.



Spanning Trees — §7.1 131

Kruskal’s algorithm

Kruskal’s Algorithm finds a minimum-weight spanning tree in a
weighted graph.

1 Initialization: Order the edges from lowest to highest weight:

w(e1) ≤ w(e2) ≤ w(e3) ≤ · · · ≤ w(ek).

2 Step 1: Define T = {e1} and grow the tree as follows:
3 Step i : Determine if adding ei to T would create a cycle.

� If not, add ei to the set T .
� If so, do nothing.

If you have a spanning tree, STOP. You have a m.w.s.t.
Otherwise, continue onto step i + 1.



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

2

4

7
2 9

3
3 5

5

6

3

7

a b c

f

h

d

g

e



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2a b



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2a b



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2a b
e2�2

b

h



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2
e2�2

a b

h



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2
e2�2

a b

h
e3�3

c

d



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2
e2�2

e3�3

a b

h

c

d



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2
e2�2

e3�3

a b

h

c

d

e4�3
f

g



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2
e2�2

e3�3
e4�3

a b

h

c

d
f

g



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2
e2�2

e3�3
e4�3

a b

h

c

d
f

g
e5�3

g
h



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2
e2�2

e3�3
e4�3

e5�3

a b

h

c

d
f

g



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2
e2�2

e3�3
e4�3

e5�3

a b

h

c

d
f

g
e6�4

a

f



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2
e2�2

e3�3
e4�3

e5�3

a b

h

c

d
f

g



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2
e2�2

e3�3
e4�3

e5�3

a b

h

c

d
f

g
e7�5

d

h



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2
e2�2

e3�3
e7�5e4�3

e5�3

a b

h

c

d
f

g



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2
e2�2

e3�3
e7�5e4�3

e5�3

a b

h

c

d
f

g

e8�5

d

g



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2
e2�2

e3�3
e7�5e4�3

e5�3

a b

h

c

d
f

g



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2
e2�2

e3�3
e7�5e4�3

e5�3

a b

h

c

d
f

g

e9�6 de



Spanning Trees — §7.1 132

Kruskal’s algorithm

Example. Run Kruskal’s algorithm on the following graph:

e1�2

e6�4

e2�2
e11�7

e3�3

e12�9

e7�5
e8�5

e9�6

e4�3

e5�3

e10�7

a b

h

c

d
f

g

e

e1�2
e2�2

e3�3
e7�5

e9�6

e4�3

e5�3

a b

h

c

d
f

g

e



Spanning Trees — §7.1 133

Notes on Kruskal’s algorithm

� Proof of correctness similar to homework. Must additionally
verify that the spanning tree is indeed minimum-weight.



Spanning Trees — §7.1 133

Notes on Kruskal’s algorithm

� Proof of correctness similar to homework. Must additionally
verify that the spanning tree is indeed minimum-weight.

� Kruskal’s algorithm is an example of a greedy algorithm.
(It chooses the cheapest edge at each point.)



Spanning Trees — §7.1 133

Notes on Kruskal’s algorithm

� Proof of correctness similar to homework. Must additionally
verify that the spanning tree is indeed minimum-weight.

� Kruskal’s algorithm is an example of a greedy algorithm.
(It chooses the cheapest edge at each point.)

� Greedy algorithms don’t always work.



The Traveling Salesman Problem 134

The traveling salesman problem

Motivation: Visit all nodes and return home as cheaply as possible.



The Traveling Salesman Problem 134

The traveling salesman problem

Motivation: Visit all nodes and return home as cheaply as possible.

� Least cost trip flying between five major cities.

� Optimal routes for delivering mail, collecting garbage.

� Finding a trip to all buildings on campus, return.



The Traveling Salesman Problem 134

The traveling salesman problem

Motivation: Visit all nodes and return home as cheaply as possible.

� Least cost trip flying between five major cities.

� Optimal routes for delivering mail, collecting garbage.

� Finding a trip to all buildings on campus, return.

Goal: Find a minimum-weight Hamiltonian cycle in a weighted graph.



The Traveling Salesman Problem 134

The traveling salesman problem

Motivation: Visit all nodes and return home as cheaply as possible.

� Least cost trip flying between five major cities.
� Optimal routes for delivering mail, collecting garbage.
� Finding a trip to all buildings on campus, return.

Goal: Find a minimum-weight Hamiltonian cycle in a weighted graph.

1

2 3

1 3

2

1

2 1

100

a

b

c d

e



The Traveling Salesman Problem 134

The traveling salesman problem

Motivation: Visit all nodes and return home as cheaply as possible.

� Least cost trip flying between five major cities.
� Optimal routes for delivering mail, collecting garbage.
� Finding a trip to all buildings on campus, return.

Goal: Find a minimum-weight Hamiltonian cycle in a weighted graph.

1

2 3

1 3

2

1

2 1

100

a

b

c d

e



The Traveling Salesman Problem 134

The traveling salesman problem

Motivation: Visit all nodes and return home as cheaply as possible.

� Least cost trip flying between five major cities.
� Optimal routes for delivering mail, collecting garbage.
� Finding a trip to all buildings on campus, return.

Goal: Find a minimum-weight Hamiltonian cycle in a weighted graph.

1

2 3

1 3

2

1

2 1

100

a

b

c d

e

We can not use a greedy algorithm to find this TSP tour!



The Traveling Salesman Problem 135

The traveling salesman problem

� It is hard to find an optimum solution.



The Traveling Salesman Problem 135

The traveling salesman problem

� It is hard to find an optimum solution.

� Goal: Create an easy-to-find pretty good solution.



The Traveling Salesman Problem 135

The traveling salesman problem

� It is hard to find an optimum solution.

� Goal: Create an easy-to-find pretty good solution.

Theorem. When the edge weights satisfy the triangle inequality,
the tree shortcut algorithm finds a tour that costs at most twice
the optimum tour.

Recall. The triangle inequality says that if x , y , and z are
vertices, then wt(xy) + wt(yz) ≤ wt(xz).



The Traveling Salesman Problem 135

The traveling salesman problem

� It is hard to find an optimum solution.

� Goal: Create an easy-to-find pretty good solution.

Theorem. When the edge weights satisfy the triangle inequality,
the tree shortcut algorithm finds a tour that costs at most twice
the optimum tour.

Recall. The triangle inequality says that if x , y , and z are
vertices, then wt(xy) + wt(yz) ≤ wt(xz).

Example: Euclidean distances

Non-example: Airfares
0.47

1.

0.75

x

y

z



The Traveling Salesman Problem 136

Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour

1 Find a minimum-weight spanning tree (Use Kruskal’s Algorithm)
2 Walk in a circuit around the edges of the tree.
3 Take shortcuts to find a tour.

0.94

0.67

0.67

0.94

2.

2.

0.67

0.94

0.67

2.

0.94

2.

0.67

0.94

0.67

2.

0.94

2.

0.67

0.67

0.94

2.

2.

0.94

000

001

010

011

100

101

110

111



The Traveling Salesman Problem 136

Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour

1 Find a minimum-weight spanning tree (Use Kruskal’s Algorithm)
2 Walk in a circuit around the edges of the tree.
3 Take shortcuts to find a tour.

0.94

0.67

0.67

0.94

2.

2.

0.67

0.94

0.67

2.

0.94

2.

0.67

0.94

0.67

2.

0.94

2.

0.67

0.67

0.94

2.

2.

0.94

000

001

010

011

100

101

110

111



The Traveling Salesman Problem 136

Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour

1 Find a minimum-weight spanning tree (Use Kruskal’s Algorithm)
2 Walk in a circuit around the edges of the tree.
3 Take shortcuts to find a tour.

000

001

010

011

100

101

110

111



The Traveling Salesman Problem 136

Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour

1 Find a minimum-weight spanning tree (Use Kruskal’s Algorithm)
2 Walk in a circuit around the edges of the tree.
3 Take shortcuts to find a tour.

000

001

010

011

100

101

110

111

11.5425



The Traveling Salesman Problem 136

Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour

1 Find a minimum-weight spanning tree (Use Kruskal’s Algorithm)
2 Walk in a circuit around the edges of the tree.
3 Take shortcuts to find a tour.

000

001

010

011

100

101

110

111

10.9902



The Traveling Salesman Problem 136

Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour

1 Find a minimum-weight spanning tree (Use Kruskal’s Algorithm)
2 Walk in a circuit around the edges of the tree.
3 Take shortcuts to find a tour.

000

001

010

011

100

101

110

111

10.4379



The Traveling Salesman Problem 136

Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour

1 Find a minimum-weight spanning tree (Use Kruskal’s Algorithm)
2 Walk in a circuit around the edges of the tree.
3 Take shortcuts to find a tour.

000

001

010

011

100

101

110

111

9.88562



The Traveling Salesman Problem 136

Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour

1 Find a minimum-weight spanning tree (Use Kruskal’s Algorithm)
2 Walk in a circuit around the edges of the tree.
3 Take shortcuts to find a tour.

000

001

010

011

100

101

110

111

9.27025



The Traveling Salesman Problem 137

Proof of theorem

Theorem. When the edge weights satisfy the triangle inequality,
the tree shortcut algorithm finds a tour that costs at most twice
the optimum tour.



The Traveling Salesman Problem 137

Proof of theorem

Theorem. When the edge weights satisfy the triangle inequality,
the tree shortcut algorithm finds a tour that costs at most twice
the optimum tour.

Proof. Define:

� TSPA: TSP tour from shortcutting spanning tree

� CIRCA: Circuit constructed by doubling spanning tree

� MST : Minimum-weight spanning tree

� TSP∗: Minimum-weight TSP tour



The Traveling Salesman Problem 137

Proof of theorem

Theorem. When the edge weights satisfy the triangle inequality,
the tree shortcut algorithm finds a tour that costs at most twice
the optimum tour.

Proof. Define:

� TSPA: TSP tour from shortcutting spanning tree

� CIRCA: Circuit constructed by doubling spanning tree

� MST : Minimum-weight spanning tree

� TSP∗: Minimum-weight TSP tour

Then,

wt(TSPA) ≤ wt(CIRCA) = 2wt(MST ) ≤ 2wt(TSP∗).


