Minimum-weight spanning trees

Motivation: Create a connected network as cheaply as possible.

- Think: Setting up electrical grid or road network.
- Some connections are cheaper than others.
- Only need to minimally connect the vertices.

Definition: A weighted graph consists of a graph $G=(V, E)$ and weight function $w: E \rightarrow \mathbb{R}$ defined on the edges of G.
The weight of a subgraph H of G is the sum of the edges in H.
Example.

Definition: For a graph G, a spanning tree T is a subgraph of G which is a tree and contains every vertex of G.

Goal: For a weighted graph G, find a minimum-weight spanning tree.

Kruskal's algorithm

Kruskal's Algorithm finds a minimum-weight spanning tree in a weighted graph.
(1) Initialization: Order the edges from lowest to highest weight:

$$
w\left(e_{1}\right) \leq w\left(e_{2}\right) \leq w\left(e_{3}\right) \leq \cdots \leq w\left(e_{k}\right)
$$

(2) Step 1: Define $T=\left\{e_{1}\right\}$ and grow the tree as follows:
(3) Step i : Determine if adding e_{i} to T would create a cycle.

- If not, add e_{i} to the set T.
- If so, do nothing.

If you have a spanning tree, STOP. You have a m.w.s.t.
Otherwise, continue onto step $i+1$.

Kruskal's algorithm

Example. Run Kruskal's algorithm on the following graph:

Notes on Kruskal's algorithm

- Proof of correctness similar to homework. Must additionally verify that the spanning tree is indeed minimum-weight.
- Kruskal's algorithm is an example of a greedy algorithm. (It chooses the cheapest edge at each point.)
- Greedy algorithms don't always work.

The traveling salesman problem

Motivation: Visit all nodes and return home as cheaply as possible.

- Least cost trip flying between five major cities.
- Optimal routes for delivering mail, collecting garbage.
- Finding a trip to all buildings on campus, return.

Goal: Find a minimum-weight Hamiltonian cycle in a weighted graph.

We can not use a greedy algorithm to find this TSP tour!

The traveling salesman problem

- It is hard to find an optimum solution.
- Goal: Create an easy-to-find pretty good solution.

Theorem. When the edge weights satisfy the triangle inequality, the tree shortcut algorithm finds a tour that costs at most twice the optimum tour.

Recall. The triangle inequality says that if x, y, and z are vertices, then $w t(x y)+w t(y z) \leq w t(x z)$.

Example: Euclidean distances
Non-example: Airfares

Finding a good TSP-tour

The Tree Shortcut Algorithm to find a good TSP-tour
(1) Find a minimum-weight spanning tree (Use Kruskal's Algorithm)
(2) Walk in a circuit around the edges of the tree.
(3) Take shortcuts to find a tour.

Proof of theorem

Theorem. When the edge weights satisfy the triangle inequality, the tree shortcut algorithm finds a tour that costs at most twice the optimum tour.

Proof. Define:

- TSPA: TSP tour from shortcutting spanning tree
- CIRC $_{A}$: Circuit constructed by doubling spanning tree
- MST: Minimum-weight spanning tree
- TSP*: Minimum-weight TSP tour

Then,

$$
\mathrm{wt}\left(T S P_{A}\right) \leq \mathrm{wt}\left(C I R C_{A}\right)=2 \mathrm{wt}(M S T) \leq 2 \mathrm{wt}\left(T S P^{*}\right)
$$

