Stable Marriages

Let's play matchmaker.

Stable Marriages

Let's play matchmaker.

Given n men and n women, where

- ▶ Each man has a complete list of preferences for the women,
- ▶ Each woman has a complete list of preferences for the men,

Stable Marriages

Let's play matchmaker.

Given n men and n women, where

- ▶ Each man has a complete list of preferences for the women,
- ▶ Each woman has a complete list of preferences for the men,

	Men's Preferences								
	Bob	Doug	Fred						
1^{st}	Alice	Alice	Elena						
2^{nd}	Clara	Elena	Clara						
3^{rd}	Elena	Clara	Alice						

W	Women's Preferences								
	Alice	Clara	Elena						
1^{st}	Fred	Bob	Doug						
2^{nd}	Bob	Fred	Fred						
3^{rd}	Doug	Doug	Bob						

Stable Marriages

Goal: Create a perfect matching of stable marriages.

That is, find a set of n couples where there are no instabilities:

Stable Marriages

Goal: Create a perfect matching of stable marriages.

That is, find a set of n couples where there are no instabilities:

Definition: An **instability** is when one man and one woman both prefer each other to their spouses.

Stable Marriages

Goal: Create a perfect matching of stable marriages.

That is, find a set of n couples where there are no instabilities:

Definition: An **instability** is when one man and one woman both prefer each other to their spouses.

Example. Suppose:

- ► Alice is married to Bob
- Clara is married to Doug

Stable Marriages

Goal: Create a perfect matching of stable marriages.

That is, find a set of n couples where there are no instabilities:

Definition: An **instability** is when one man and one woman both prefer each other to their spouses.

Example. Suppose:

- Alice is married to Bob
- ► Clara is married to Doug
- ▶ Bob prefers Clara to Alice

Stable Marriages

Goal: Create a perfect matching of stable marriages.

That is, find a set of n couples where there are no instabilities:

Definition: An **instability** is when one man and one woman both prefer each other to their spouses.

Example. Suppose:

- ► Alice is married to Bob
- ► Clara is married to Doug
- ▶ Bob prefers Clara to Alice

If Clara prefers Bob to Doug: _____

Stable Marriages

Goal: Create a perfect matching of stable marriages.

That is, find a set of n couples where there are no instabilities:

Definition: An **instability** is when one man and one woman both prefer each other to their spouses.

Example. Suppose:

- ► Alice is married to Bob
- ► Clara is married to Doug
- ▶ Bob prefers Clara to Alice

The Gale-Shapley Algorithm

Theorem. (Gale, Shapley, 1962) In the above situation, there always exists a perfect matching of stable marriages.

The Gale-Shapley Algorithm

Theorem. (Gale, Shapley, 1962) In the above situation, there always exists a perfect matching of stable marriages.

The Gale-Shapley Algorithm

Theorem. (Gale, Shapley, 1962) In the above situation, there always exists a perfect matching of stable marriages.

Proof. Use the **Gale–Shapley Algorithm** to create the marriages.

Start with no couples engaged.

The Gale-Shapley Algorithm

Theorem. (Gale, Shapley, 1962) In the above situation, there always exists a perfect matching of stable marriages.

- Start with no couples engaged.
- As long as at least one man is unengaged, repeat the following: Each unengaged man proposes to his next most preferred woman.

The Gale-Shapley Algorithm

Theorem. (Gale, Shapley, 1962) In the above situation, there always exists a perfect matching of stable marriages.

- Start with no couples engaged.
- As long as at least one man is unengaged, repeat the following: Each unengaged man proposes to his next most preferred woman. Each woman then decides whether to accept or reject the proposal(s), as follows:
 - ▶ If she is not already engaged, she accepts the proposal.
 - ▶ If she is already engaged, she uses her preference list; she accepts the proposal of the man she prefers the most and rejects all others.

The Gale-Shapley Algorithm

Theorem. (Gale, Shapley, 1962) In the above situation, there always exists a perfect matching of stable marriages.

- Start with no couples engaged.
- As long as at least one man is unengaged, repeat the following: Each unengaged man proposes to his next most preferred woman. Each woman then decides whether to accept or reject the proposal(s), as follows:
 - ▶ If she is not already engaged, she accepts the proposal.
 - ▶ If she is already engaged, she uses her preference list; she accepts the proposal of the man she prefers the most and rejects all others.
- **3** When all men are engaged, stop. There are n stable marriages.

The Gale-Shapley Algorithm

Theorem. (Gale, Shapley, 1962) In the above situation, there always exists a perfect matching of stable marriages.

Proof. Use the **Gale–Shapley Algorithm** to create the marriages.

- Start with no couples engaged.
- As long as at least one man is unengaged, repeat the following: Each unengaged man proposes to his next most preferred woman. Each woman then decides whether to accept or reject the proposal(s), as follows:
 - ▶ If she is not already engaged, she accepts the proposal.
 - ▶ If she is already engaged, she uses her preference list; she accepts the proposal of the man she prefers the most and rejects all others.
- **3** When all men are engaged, stop. There are n stable marriages.

<<Time for your moment of zen>>

Applying the Gale-Shapley Algorithm

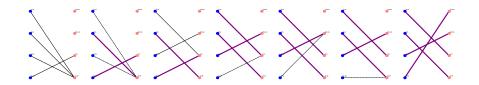
Here is a complete set of preferences for 4 men and 4 women.

Men's Preferences

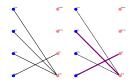
	Ivan	Eric	John	R.M.
1 st	R.W.	R.W.	R.W.	Vic.
2^{nd}	Vic.	Jennie	Nicole	Nicole
3^{rd}	Jennie	Vic.	Jennie	R.W.
4 th	Nicole	Nicole	Vic.	Jennie

Women's Preferences

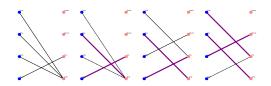
	Jennie	Nicole	Vic.	R.W.
1 st	Eric	John	John	Eric
2^{nd}	John	R.M.	lvan	R.M.
3^{rd}	R.M.	Eric	R.M.	Ivan
4 th	Ivan	Ivan	Eric	John



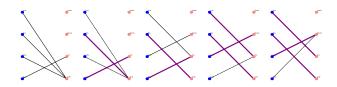
Men's Preterences				Women's Preferences			
Ivan	Eric	John	R.M.	Jennie	Nicole	Vic.	R.W.
				Eric			
Vic.	Jennie	Nicole	Nicole	John	R.M.	lvan	R.M.
Jennie	Vic.	Jennie	R.W.	R.M.	Eric	R.M.	Ivan
Nicole	Nicole	Vic.	Jennie	Ivan	Ivan	Eric	John



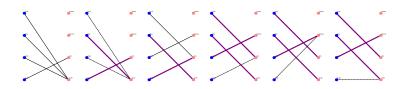
N	len's Pro	eferences	5	Women's Preferences			
lvan	Eric	John	R.M.	Jennie	Nicole	Vic.	R.W.
R.W.	R.W.	R.W.	Vic.	Eric	John	John	Eric
Vic.	Jennie	Nicole	Nicole	John	R.M.	Ivan	R.M.
Jennie	Vic.	Jennie	R.W.	R.M.	Eric	R.M.	Ivan
Nicole	Nicole	Vic	lennie	lvan	Ivan	Fric	John



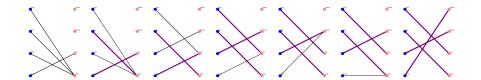
N	Men's Preferences				Women's Preferences			
Ivan	Eric	John	R.M.	Jennie	Nicole	Vic.	R.W.	
R.W.	R.W.	R.W.	Vic.	Eric	John	John	Eric	
Vic.	Jennie	Nicole	Nicole	John	R.M.	Ivan	R.M.	
Jennie	Vic.	Jennie	R.W.	R.M.	Eric	R.M.	Ivan	
Nicole	Nicole	Vic.	Jennie	lvan	lvan	Eric	John	



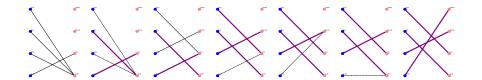
ľ	Men's Pr	eferences	6	Wo	men's Pi	referenc	ces
Ivan	Eric	John	R.M.	Jennie	Nicole	Vic.	R.W.
			Vic.				
Vic.	Jennie	Nicole	Nicole	John	R.M.	Ivan	R.M.
Jennie	Vic.	Jennie	R.W.	R.M.	Eric	R.M.	Ivan
Nicole	Nicole	Vic.	Jennie	Ivan	Ivan	Eric	John



N	∕len's Pr	eferences	6	Wo	men's P	referen	ces	
			R.M.		Nicole	Vic.	R.W.	
R.W.	R.W.	R.W.	Vic.	Eric	John	John	Eric	
				John				
Jennie	Vic.	Jennie	R.W.	R.M.	Eric	R.M.	Ivan	
Nicole	Nicole	Vic.	Jennie	Ivan	Ivan	Eric	John	



ľ	vien's Pr	eterences	S	VVo	men's Pi	referenc	ces
Ivan	Eric	John	R.M.	Jennie	Nicole	Vic.	R.W.
			Vic.				
			Nicole				
			R.W.				
Nicole	Nicole	Vic	Jennie	lvan	lvan	Fric	lohn



	Men's Preferences				vvomen's Preferences			
	Eric							
R.W.	R.W.	R.W.	Vic.	Eric	John	John	Eric	
Vic.	R.W. Jennie	Nicole	Nicole	John	R.M.	Ivan	R.M.	
Jennie	Vic.	Jennie	R.W.	R.M.	Eric	R.M.	Ivan	
Nicole	Vic. Nicole	Vic.	Jennie	Ivan	Ivan	Eric	John	

Proof of Correctness

Claim. The Gale–Shapley Algorithm gives a set of *n* stable marriages.

Proof of Correctness

Claim. The Gale–Shapley Algorithm gives a set of *n* stable marriages.

Proof. We must show that the algorithm always stops, and that when it stops, the output is indeed a full set of stable marriages.

Proof of Correctness

Claim. The Gale–Shapley Algorithm gives a set of *n* stable marriages.

Proof. We must show that the algorithm always stops, and that when it stops, the output is indeed a full set of stable marriages.

The algorithm terminates.

Proof of Correctness

Claim. The Gale–Shapley Algorithm gives a set of *n* stable marriages.

Proof. We must show that the algorithm always stops, and that when it stops, the output is indeed a full set of stable marriages.

The algorithm terminates.

- ▶ In each step, at least one proposal occurs
- there are a finite number to be made.

Proof of Correctness

Claim. The Gale–Shapley Algorithm gives a set of *n* stable marriages.

Proof. We must show that the algorithm always stops, and that when it stops, the output is indeed a full set of stable marriages.

The algorithm terminates.

- ▶ In each step, at least one proposal occurs
- ▶ there are a finite number to be made.

Claim: Upon termination, everyone is engaged.

Proof of Correctness

Claim. The Gale–Shapley Algorithm gives a set of *n* stable marriages.

Proof. We must show that the algorithm always stops, and that when it stops, the output is indeed a full set of stable marriages.

The algorithm terminates.

- ▶ In each step, at least one proposal occurs
- there are a finite number to be made.

Claim: Upon termination, everyone is engaged.

- ▶ Once a woman has been proposed to, she stays engaged.
- ▶ If a woman is not engaged at the end, she had no proposal.
- ▶ It follows that there is also some man not engaged; however, he must have proposed to the unengaged woman during some round!

Proof of Correctness

The output is a set of stable marriages.

Proof of Correctness

The output is a set of stable marriages.

We ask: Is there an instability?

▶ Suppose Bob prefers Clara to his current wife.

Proof of Correctness

The output is a set of stable marriages.

- ▶ Suppose Bob prefers Clara to his current wife.
- ▶ Bob must have proposed to Clara before his current wife.

Proof of Correctness

The output is a set of stable marriages.

- Suppose Bob prefers Clara to his current wife.
- ▶ Bob must have proposed to Clara before his current wife.
- ► Clara must have turned down Bob.

Proof of Correctness

The output is a set of stable marriages.

- Suppose Bob prefers Clara to his current wife.
- ▶ Bob must have proposed to Clara before his current wife.
- ► Clara must have turned down Bob.
 - Clara was proposed to by someone she prefers!

Proof of Correctness

The output is a set of stable marriages.

- Suppose Bob prefers Clara to his current wife.
- ▶ Bob must have proposed to Clara before his current wife.
- ▶ Clara must have turned down Bob.
 - ▶ Clara was proposed to by someone she prefers!
- ▶ Hence, Clara must prefer her current husband to Bob.

Proof of Correctness

The output is a set of stable marriages.

We ask: Is there an instability?

- Suppose Bob prefers Clara to his current wife.
- ▶ Bob must have proposed to Clara before his current wife.
- ► Clara must have turned down Bob.
 - ▶ Clara was proposed to by someone she prefers!
- ▶ Hence, Clara must prefer her current husband to Bob.
- ► Therefore, there is no instability.

Male-optimality

Claim. The marriages \mathcal{S} generated by the Gale–Shapley Algorithm are **male optimal**.

Male-optimality

Claim. The marriages \mathcal{S} generated by the Gale–Shapley Algorithm are **male optimal**. That is, given any other set of stable marriages, each man will only be paired with a woman lower on his preference list.

Male-optimality

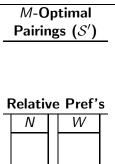
Claim. The marriages \mathcal{S} generated by the Gale–Shapley Algorithm are **male optimal**. That is, given any other set of stable marriages, each man will only be paired with a woman lower on his preference list.

Male-optimality

Claim. The marriages \mathcal{S} generated by the Gale–Shapley Algorithm are **male optimal**. That is, given any other set of stable marriages, each man will only be paired with a woman lower on his preference list.

Proof. Suppose that during the Gale–Shapley Algorithm, there is a man who is paired with a "sub-optimal" woman.

• Let M be the first man who is rejected by his optimal woman W during the algorithm.



Male-optimality

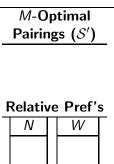
Claim. The marriages \mathcal{S} generated by the Gale–Shapley Algorithm are **male optimal**. That is, given any other set of stable marriages, each man will only be paired with a woman lower on his preference list.

Proof. Suppose that during the Gale–Shapley Algorithm, there is a man who is paired with a "sub-optimal" woman.

• Let M be the first man who is rejected by his optimal woman W during the algorithm.

[That is, there is some other set S' of stable

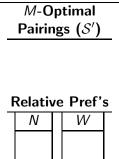
[That is, there is some other set S' of stable marriages in which M is paired with W.]



Male-optimality

Claim. The marriages \mathcal{S} generated by the Gale–Shapley Algorithm are **male optimal**. That is, given any other set of stable marriages, each man will only be paired with a woman lower on his preference list.

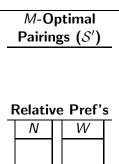
- ullet Let M be the first man who is rejected by his optimal woman W during the algorithm.
- [That is, there is some other set S' of stable marriages in which M is paired with W.]
- M is rejected because some man N proposes to W whom W prefers to M.



Male-optimality

Claim. The marriages \mathcal{S} generated by the Gale–Shapley Algorithm are **male optimal**. That is, given any other set of stable marriages, each man will only be paired with a woman lower on his preference list.

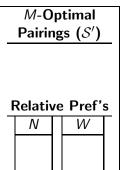
- \bullet Let M be the first man who is rejected by his optimal woman W during the algorithm.
- [That is, there is some other set S' of stable marriages in which M is paired with W.]
- *M* is rejected because some man *N* proposes to *W* whom *W* prefers to *M*.
- Since *M* is the *first* man rejected, we know *N* likes *W* at least as much as his optimal woman.



Male-optimality

Claim. The marriages \mathcal{S} generated by the Gale–Shapley Algorithm are **male optimal**. That is, given any other set of stable marriages, each man will only be paired with a woman lower on his preference list.

- Let M be the first man who is rejected by his optimal woman W during the algorithm.
- [That is, there is some other set S' of stable marriages in which M is paired with W.]
- *M* is rejected because some man *N* proposes to *W* whom *W* prefers to *M*.
- Since *M* is the *first* man rejected, we know *N* likes *W* at least as much as his optimal woman.



Last remarks

▶ The marriages generated by Gale–Shapley are male optimal.

▶ The marriages generated by Gale—Shapley are female pessimal.

Last remarks

- ▶ The marriages generated by Gale—Shapley are male optimal.
- ▶ The marriages generated by Gale–Shapley are female pessimal.
- ▶ Run the algorithm with the women proposing to reverse the roles.

If you do this and get the same marriages, _____

Last remarks

- ▶ The marriages generated by Gale–Shapley are male optimal.
- ▶ The marriages generated by Gale–Shapley are female pessimal.
- ► Run the algorithm with the women proposing to reverse the roles.

 If you do this and get the same marriages, ________
- ▶ If not all rankings are made, then there may be unmatched people. For example, what if Robot Man did not like Jennie?

Last remarks

- ▶ The marriages generated by Gale—Shapley are male optimal.
- ▶ The marriages generated by Gale–Shapley are female pessimal.
- ▶ Run the algorithm with the women proposing to reverse the roles.
 If you do this and get the same marriages, ______
- ▶ If not all rankings are made, then there may be unmatched people. For example, what if Robot Man did not like Jennie?
- ➤ The National Resident Matching Program (http://www.nrmp.org) implements this algorithm to match medical students to residency programs.