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Algorithms

Definition: An algorithm is a set of rules followed to solve a problem.

In general, an algorithm has the steps:

1 Organize the input.

2 Repeatedly apply some steps
until a termination condition holds

3 Analyze data upon termination
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Algorithms

Definition: An algorithm is a set of rules followed to solve a problem.

In general, an algorithm has the steps: Havel–Hakimi:

1 Organize the input.

2 Repeatedly apply some steps
until a termination condition holds

3 Analyze data upon termination

Computers can be used to run the algorithms once we verify they work.

To verify the correctness of an algorithm:

1 Verify that the algorithm terminates. (often invoking finiteness)

2 Verify that the result satisfies the desired conditions.
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Matchings in Graphs

Definition: A matching M in a graph G is a subset of edges of G
that share no vertices.

Definition: A maximal matching M is a matching such that the
inclusion into M of any edge of G \ M is no longer a matching.

Definition: A maximum matching is a matching M that has the
most edges possible for the graph G .

Thought Exercise: What is the result of overlapping two matchings?

Recall. A perfect matching is a matching involving every vertex of G .

� We will discuss matchings in a bipartite graph �
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Application: Scheduling

Suppose you are working in a group trying to complete all the
problems on the homework. Depending on everyone’s preferences,
you would like to assign each member one problem to do.
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9�5

Person A likes problems 9-1, 9-2, 9-3, and 9-5.
Person B likes problems 9-1, 9-2, and 9-4.
Person C likes problems 9-3, 9-4, and 9-5.
Person D likes problems 9-2 and 9-3.
Person E likes problems 9-3 and 9-4.

Create a graph that models the situation.

Question:
What is a maximum matching for this graph?

We will use an algorithm to answer this question.
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Motivating The Hungarian Algorithm

Let us work through the basic idea behind the algorithm.
We start with an initial matching; we might as well make it maximal.
Why is the pictured matching maximal?
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Definition: Given a matching M in a graph G ,
an M-alternating path is a path in G that
starts at a vertex not in M, and whose edges
alternate between being in M and not in M.
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Let us work through the basic idea behind the algorithm.
We start with an initial matching; we might as well make it maximal.
Why is the pictured matching maximal?
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Definition: Given a matching M in a graph G ,
an M-alternating path is a path in G that
starts at a vertex not in M, and whose edges
alternate between being in M and not in M.

Example D → 9-2 → B → 9-4 → C is an
M-alternating path.

Definition: An M-augmenting path is an M-
alternating path that begins AND ends at un-
matched vertices.

It is augmenting because we can improve M by toggling the edges
between those in M and those not in M.
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Given M, P = D → 9-2 → B → 9-1 is an M-augmenting path.
Toggling the edges in P gives a new matching M ′.
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Given M, P = D → 9-2 → B → 9-1 is an M-augmenting path.
Toggling the edges in P gives a new matching M ′.

Given M ′, P ′ = E → 9-4 → C → 9-3 → A → 9-5 is an
M ′-augmenting path. Toggling the edges in P ′ gives a new
matching M ′′.
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Given M, P = D → 9-2 → B → 9-1 is an M-augmenting path.
Toggling the edges in P gives a new matching M ′.

Given M ′, P ′ = E → 9-4 → C → 9-3 → A → 9-5 is an
M ′-augmenting path. Toggling the edges in P ′ gives a new
matching M ′′.

The matching M ′′ is maximal.
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The Hungarian Algorithm

The Hungarian Algorithm (Kuhn, König, Egeváry) [Finds a
maximum matching in a bipartite graph (w/red and blue vertices)]
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maximum matching in a bipartite graph (w/red and blue vertices)]

1 Start with a bipartite graph G and any matching M.
Label all red vertices eligible (for augmentation).



Matchings — §7.2 98

The Hungarian Algorithm

The Hungarian Algorithm (Kuhn, König, Egeváry) [Finds a
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The Hungarian Algorithm

The Hungarian Algorithm (Kuhn, König, Egeváry) [Finds a
maximum matching in a bipartite graph (w/red and blue vertices)]

1 Start with a bipartite graph G and any matching M.
Label all red vertices eligible (for augmentation).

2 If all red, eligible vertices are matched, stop. Otherwise, there
exists a red, unmatched, eligible vertex to use in the next step.

3 Let v be an unmatched, eligible, red vertex. Start growing all

possible M-alternating paths from v . That is, follow every edge
not in M to a blue vertex. From a matched blue vertex, follow the
edge of M back to a red vertex, and repeat as far as possible.{

If there is an M-augmenting path, toggle edges to augment M.

If there is no M-augmenting path, mark a ineligible.

Return to Step 2.
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Applying the Hungarian Algorithm

Here is something that might happen during an application of the
Hungarian algorithm:

A

B

C

D

E

F

G

H

I

J

Example. There is no M-augmenting path
starting at B in the graph to the right.

We would mark B ineligible and move on to
the next eligible, unmatched red vertex in the
graph (E ).
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Proof of Correctness

Claim. The Hungarian Algorithm gives a maximum matching.
Proof. We must show that the algorithm always stops, and that
when it stops, the output is indeed a maximum matching.

The algorithm terminates.
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Proof of Correctness

Claim. The Hungarian Algorithm gives a maximum matching.
Proof. We must show that the algorithm always stops, and that
when it stops, the output is indeed a maximum matching.

The algorithm terminates. Each time Step 3 is run, one red
vertex either becomes matched or becomes ineligible. Also, no red
vertex that starts matched becomes unmatched. Since there are a
finite number of red vertices, the algorithm must terminate.

The output is a maximum matching. The output M is a
matching inducing no M-augmenting paths in the graph. Suppose
that there were another matching M∗ that used more edges than M.

When we overlap M and M∗, the result is a union of cycles and paths.
At least one path must have more edges from M∗ than M.

This path is an M-augmenting path, contradicting the definition of M.


