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(Vertex) Colorings

Definition: A coloring of a graph G is a labeling of the vertices of
G with colors. [Technically, it is a function f : V (G ) → {1, 2, . . . , l}.]
Definition: A proper coloring of G is a coloring of G such that
no two adjacent vertices are labeled with the same color.

Example: W6:

We can properly color W6 with colors and no fewer.

Of interest: What is the fewest colors necessary to properly color G?
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The chromatic number of a graph

Definition: The minimum number of colors necessary to properly
color a graph G is called the chromatic number of G , denoted
χ(G ) = “chi”.

Example: χ(Kn) =

Proof: In order to have a proper coloring of Kn, we would need to
use at least colors, because every vertex is adjacent to every
other vertex. With fewer than colors, there would be two
adjacent vertices colored the same. And indeed, placing a different
color on each vertex is a proper coloring of Kn.

� χ(G ) = k is the same as:

1 There is a proper coloring of G with k colors. (Show it!)

2 There is no proper coloring of G with k − 1 colors. (Prove it!)
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Chromatic numbers and subgraphs

Lemma C: If H is a subgraph of G , then χ(H) ≤ χ(G ).

Proof: If χ(G ) = k, then there is a proper coloring of G using k
colors. Let the vertices of H inherit their coloring from G . This
gives a proper coloring of H using k colors, which implies χ(H) ≤ k.

Corollary: For any graph G , χ(G ) ≥ ω(G ).

Proof: Apply Lemma C to the subgraph of G isomorphic to Kω(G).

Example: Calculate χ(G ) for this graph G :
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Critical graphs

One way to prove that G can not be properly colored with k − 1
colors is to find a subgraph H of G that requires k colors.

How small can this subgraph be?

Definition: A graph G is called critical if for every proper
subgraph H � G , then χ(H) < χ(G ).

Theorem 2.1.2: Every graph G contains a critical subgraph H
such that χ(H) = χ(G ).

Proof: If G is critical, stop. Define H = G .
If not, then there exists a proper subgraph G1 of G with .
If G1 is critical, stop. Define H = G1.
If not, then there exists a proper subgraph G2 of G1 with · · ·
Since G is finite, there will be some proper subgraph Gl of Gl−1

such that Gl is critical and χ(Gl) = χ(Gl−1) = · · · = χ(G ).
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Critical graphs

What do we know about critical graphs?

Theorem 2.1.1: Every critical graph is connected.

Theorem 2.1.3: If G is critical with χ(G ) = 4, then for all
v ∈ V (G ), deg(v) ≥ 3.

Proof by contradiction: Suppose not. Then there is some
v ∈ V (G ) with deg(v) ≤ 2. Remove v from G to create H.

Similarly: If G is critical, then for all v ∈ V (G ), deg(v) ≥ χ(G )− 1.
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Bipartite graphs

Question: What is χ(Cn) when n is odd?

Answer:

Definition: A graph is called bipartite if χ(G ) ≤ 2.

Examples: Km,n, �n, Trees

Theorem 2.1.6: G is bipartite ⇐⇒ every cycle in G has even length.

(⇒) Let G be bipartite. Assume that there is some cycle C of
odd length contained in G . . .
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Proof of Theorem 2.1.6

(⇐) Suppose that every cycle in G has even length. We want to
show that G is bipartite. Consider the case when G is connected.

Plan: Construct a coloring on G and prove that it is proper.

Choose some starting vertex x and color it blue. For every other
vertex y , calculate the distance from y to x and then color y :{

blue if d(x , y) is even.

red if d(x , y) is odd.

Question: Is this a proper coloring of G?

Suppose not. Then there are two vertices v and w of the same
color that are adjacent. This generates a contradiction because
there exists an odd cycle as follows:
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Edge Coloring

Parallel to the idea of vertex coloring is the idea of edge coloring.

Definition: An edge coloring of a graph G is a labeling of the edges of
G with colors. [Technically, it is a function f : E (G ) → {1, 2, . . . , l}.]
Definition: A proper edge coloring of G is an edge coloring of G
such that no two adjacent edges are colored the same.

Example: Cube graph (�3):

We can properly edge color �3 with colors and no fewer.

Definition: The minimum number of colors necessary to properly
edge color a graph G is called the edge chromatic number of G ,
denoted χ′(G ) = “chi prime”.
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Edge coloring theorems

Theorem 2.2.1: For any graph G , χ′(G ) ≥ ∆(G ).

Theorem 2.2.2: Vizing’s Theorem:
For any graph G , χ′(G ) equals either ∆(G ) or ∆(G ) + 1.

Proof: Hard. (See reference [24] if interested.)

Consequence: To determine χ′(G ),

Fact: Most 3-regular graphs have edge chromatic number 3.
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Snarks

Definition: Another name for 3-regular is cubic.

Definition: A 3-regular graph with edge chromatic number 4 is
called a snark.

Example: The Petersen graph P :
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The edge chromatic number of complete graphs

Goal: Determine χ′(Kn) for all n.

Vertex Degree Analysis: The degree of every vertex in Kn is .

Vizing’s theorem implies that χ′(Kn) = or .

If χ′(Kn) = , then each vertex has an edge leaving of each color.

Q: How many red edges are there?

This is only an integer when:

So, the best we can expect is that

{
χ′(K2n) =

χ′(K2n−1) =
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The edge chromatic number of complete graphs

Theorem 2.2.3: χ′(K2n) = 2n − 1.
Proof: We prove this using the turning trick.
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Label the vertices of K2n

0, 1, . . . , 2n − 2, x . Now,
Connect 0 with x ,
Connect 1 with 2n − 2,

...
Connect n − 1 with n.

Now turn the edges.
And do it again. (and again, . . .)

Each time, new edges are used.
This is because each of the
edges is a different “circular length”: vertices are at circ. distance
1, 3, 5, . . ., 4, 2 from each other, and x is connected to a different
vertex each time.
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The edge chromatic number of complete graphs

Theorem 2.2.4: χ′(K2n−1) = 2n − 1.

This construction also gives a way to edge color K2n−1 with 2n − 1
colors—simply delete vertex x!

This is related to the area of combinatorial designs.
Question: Is it possible for six tennis players to play one match
per day in a five-day tournament in such a way that each player
plays each other player once?

4

3 2

1

0 x

Day 1 0x 14 23
Day 2 1x 20 34
Day 3 2x 31 40
Day 4 3x 42 01
Day 5 4x 03 12

Theorem 2.2.3 proves there is such a tournament for all even numbers.


