(Vertex) Colorings

Definition: A **coloring** of a graph G is a labeling of the vertices of G with colors. [Technically, it is a function $f:V(G) \rightarrow \{1,2,\ldots,l\}$.]

Definition: A proper coloring of G is a coloring of G such that no two adjacent vertices are labeled with the same color.

Example: W_6 :

We can properly color W_6 with ____ colors and no fewer.

Of interest: What is the fewest colors necessary to properly color *G*?

The chromatic number of a graph

Definition: The minimum number of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G) =$ "chi".

Example: $\chi(K_n) = \underline{\hspace{1cm}}$

Proof: In order to have a proper coloring of K_n , we would need to use at least ____ colors, because every vertex is adjacent to every other vertex. With fewer than ____ colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_n .

- $\star \chi(G) = k$ is the same as:
 - ① There is a proper coloring of G with k colors. (Show it!)
 - ② There is no proper coloring of G with k-1 colors. (Prove it!)

 $Vertex Coloring — \S 2.1 35$

Chromatic numbers and subgraphs

Lemma C: If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.

Proof: If $\chi(G) = k$, then there is a proper coloring of G using k colors. Let the vertices of H inherit their coloring from G. This gives a proper coloring of H using k colors, which implies $\chi(H) \leq k$.

Corollary: For any graph G, $\chi(G) \ge \omega(G)$.

Proof: Apply Lemma C to the subgraph of G isomorphic to $K_{\omega(G)}$.

Example: Calculate $\chi(G)$ for this graph G:

Vertex Coloring — $\S 2.1$ 36

Critical graphs

One way to prove that G can not be properly colored with k-1 colors is to find a subgraph H of G that requires k colors.

How small can this subgraph be?

Definition: A graph G is called **critical** if for every proper subgraph $H \subsetneq G$, then $\chi(H) < \chi(G)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H) = \chi(G)$.

Proof: If G is critical, stop. Define H=G. If not, then there exists a proper subgraph G_1 of G with _______ If G_1 is critical, stop. Define $H=G_1$. If not, then there exists a proper subgraph G_2 of G_1 with ______...

Since G is finite, there will be some proper subgraph G_l of G_{l-1} such that G_l is critical and $\chi(G_l) = \chi(G_{l-1}) = \cdots = \chi(G)$.

 $Vertex Coloring — \S 2.1$

Critical graphs

What do we know about critical graphs?

Theorem 2.1.1: Every critical graph is connected.

Theorem 2.1.3: If G is critical with $\chi(G) = 4$, then for all $v \in V(G)$, $\deg(v) \geq 3$.

Proof by contradiction: Suppose not. Then there is some $v \in V(G)$ with $\deg(v) \leq 2$. Remove v from G to create H.

Similarly: If G is critical, then for all $v \in V(G)$, $\deg(v) \ge \chi(G) - 1$.

Bipartite graphs

Question: What is $\chi(C_n)$ when n is odd?

Answer:

Definition: A graph is called **bipartite** if $\chi(G) \leq 2$.

Examples: $K_{m,n}$, \square_n , Trees

Theorem 2.1.6: G is bipartite \iff every cycle in G has even length.

 (\Rightarrow) Let G be bipartite. Assume that there is some cycle C of odd length contained in G...

Proof of Theorem 2.1.6

 (\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected.

Plan: Construct a coloring on G and prove that it is proper.

Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y:

$$\begin{cases} \text{blue} & \text{if } d(x,y) \text{ is even.} \\ \text{red} & \text{if } d(x,y) \text{ is odd.} \end{cases}$$

Question: Is this a proper coloring of G?

Suppose not. Then there are two vertices v and w of the same color that are adjacent. This generates a contradiction because there exists an odd cycle as follows:

Edge Coloring — §2.2

Edge Coloring

Parallel to the idea of vertex coloring is the idea of edge coloring.

Definition: An **edge coloring** of a graph G is a labeling of the edges of G with colors. [Technically, it is a function $f: E(G) \rightarrow \{1, 2, \dots, I\}$.]

Definition: A **proper** edge coloring of G is an edge coloring of G such that no two *adjacent edges* are colored the same.

Example: Cube graph (\square_3) :

We can properly edge color \square_3 with ____ colors and no fewer.

Definition: The minimum number of colors necessary to properly edge color a graph G is called the **edge chromatic number** of G, denoted $\chi'(G) =$ "chi prime".

Edge coloring theorems

Theorem 2.2.1: For any graph G, $\chi'(G) \geq \Delta(G)$.

Theorem 2.2.2: Vizing's Theorem:

For any graph G, $\chi'(G)$ equals either $\Delta(G)$ or $\Delta(G) + 1$.

Proof: Hard. (See reference [24] if interested.)

Consequence: To determine $\chi'(G)$,

Fact: Most 3-regular graphs have edge chromatic number 3.

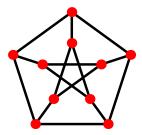
Edge Coloring — §2.2

Snarks

Definition: Another name for 3-regular is **cubic**.

Definition: A 3-regular graph with edge chromatic number 4 is called a **snark**.

Example: The Petersen graph *P*:



The edge chromatic number of complete graphs

Goal: Determine $\chi'(K_n)$ for all n.

Vertex Degree Analysis: The degree of every vertex in K_n is _____.

Vizing's theorem implies that $\chi'(K_n) = \underline{\hspace{1cm}}$ or $\underline{\hspace{1cm}}$.

If $\chi'(K_n) = \underline{\hspace{1cm}}$, then each vertex has an edge leaving of each color.

Q: How many red edges are there?

This is only an integer when:

So, the best we can expect is that $\begin{cases} \chi'(K_{2n}) = \\ \chi'(K_{2n-1}) = \end{cases}$

Edge Coloring — §2.2

The edge chromatic number of complete graphs

Theorem 2.2.3: $\chi'(K_{2n}) = 2n - 1$.

Proof: We prove this using the *turning trick*.

Label the vertices of K_{2n}

$$0, 1, \dots, 2n - 2, x$$
. Now,

Connect 0 with
$$x$$
,

Connect 1 with
$$2n-2$$
,

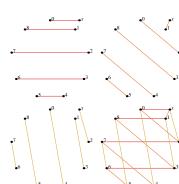
Connect
$$n-1$$
 with n

Now turn the edges.

Each time, new edges are used.

This is because each of the

edges is a different "circular length": vertices are at circ. distance 1, 3, 5, ..., 4, 2 from each other, and x is connected to a different vertex each time.



The edge chromatic number of complete graphs

Theorem 2.2.4:
$$\chi'(K_{2n-1}) = 2n - 1$$
.

This construction also gives a way to edge color K_{2n-1} with 2n-1 colors—simply delete vertex x!

This is related to the area of combinatorial designs.

Question: Is it possible for six tennis players to play one match per day in a five-day tournament in such a way that each player plays each other player once?

