Dictionary of Graphs

Families of Graphs \bigcirc \bigcirc \bigcirc \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes

▶ Path graph P_n : The path graph P_n has n + 1 vertices, $V = \{v_0, v_1, \dots, v_n\}$ and n edges, $E = \{v_0v_1, v_1v_2, \dots, v_{n-1}v_n\}.$

★ The **length** of a path is the number of *edges* in the path.

• **Cycle graph**
$$C_n$$
: The cycle graph C_n has n vertices,
 $V = \{v_1, \ldots, v_n\}$ and n edges,
 $E = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1\}.$

We often try to find and/or count paths and cycles in a graph.

Families of Graphs \bigcirc \bigcirc \bigcirc \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes

Complete graph K_n: The complete graph K_n has n edges, V = {v₁,..., v_n} and has an edge connecting every pair of distinct vertices, for a total of ______ edges.

Definition: a **bipartite** graph is a graph where the vertex set can be broken into two parts such that there are no edges between vertices in the same part.

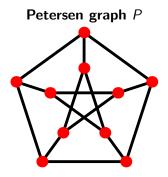
▶ **Complete bipartite graph** $K_{m,n}$: The complete bipartite graph $K_{m,n}$ has m + n vertices $V = \{v_1, \ldots, v_m, w_1, \ldots, w_n\}$ and an edge connecting each v vertex to each w vertex.

Families of Graphs \bigcirc \bigcirc \bigcirc \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes

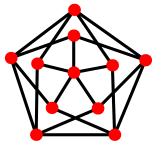
- ▶ Wheel graph W_n : The wheel graph W_n has n + 1 vertices $V = \{v_0, v_1, \ldots, v_n\}$. Arrange and connect the last n vertices in a cycle (the rim of the wheel). Place v_0 in the center (the hub), and connect it to every other vertex.
- ▶ Star graph St_n : The star graph St_n has n + 1 vertices $V = \{v_0, v_1, \dots, v_n\}$ and n edges $\{v_0v_1, v_0v_2, \dots, v_0v_n\}$.
- ► Cube graph □_n: The cube graph in *n* dimensions, □_n, has 2ⁿ vertices. We index the vertices by binary numbers of length *n*. We connect two vertices when their binary numbers differ by exactly one digit.

Dictionary of Graphs

Two graphs we will see on a consistant basis are:

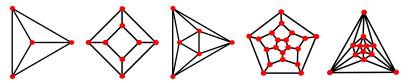


Grötzsch graph Gr



Definition: The **platonic solids** are the tetrahedron, cube, octahedron, icosahedron, and dodecahedron. They are the only regular convex polyhedra made of regular polygons. **Definition:** The **Schlegel diagram** of a polyhedron is a planar 2D graph that represents a 3D object, where vertices of the graph represent vertices of the polyhedron, and edges of the graph represent the edges of the polyhedron.

The Platonic graphs are the Schlegel diagrams of the five platonic solids.



When are two graphs the same?

Two graphs G_1 and G_2 are **equal** $(G_1 = G_2)$ if they have the exact same vertex sets and edge sets. The graphs G_1 and G_2 are **isomorphic** $(G_1 \approx G_2)$ if there exists a bijection $\varphi : V(G_1) \rightarrow V(G_2)$ such that

 $v_i v_j$ is an edge of G_1 iff $\varphi(v_i)\varphi(v_j)$ is an edge of G_2 .

In this course, we will spend a large amount of time trying to figure out whether two given graphs are the same.

Side note: For a graph, the set of homomorphisms (isomorphisms into itself) is a measure of the symmetry of the graph. Ex. $\hat{\Omega}$

Simple operations on graphs

The **union** of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ can mean two different things:

- When the vertex sets are different, the (disjoint) union H of G₁ and G₂ is formed by placing the graphs side by side. In this case, H = (V₁ ∪ V₂, E₁ ∪ E₂).
- ▶ When the vertex sets are the same, then the (edge) union H of G_1 and G_2 contains every edge of both E_1 and E_2 . In this case, $H = (V, E_1 \cup E_2)$.

The **complement** G^c or \overline{G} of a graph G = (V, E) is a graph with the same vertex set. Its edge set contains all edges **NOT** in G.

If
$$G = (V, E_1)$$
 and $G^c = (V, E_2)$, then
 $E_1 \cup E_2 = E(K_n)$, and $E_1 \cap E_2 = \emptyset$.

Subgraphs

A **subgraph** H of a graph G is a graph where every vertex of H is a vertex of G, and that every edge of H is an edge of G. \bigstar If edge e of G is in H, then the endpoints of e must also be in H.

A subgraph *H* is a **proper subgraph** if $H \neq G$.

If G_1 and G_2 are two graphs, we say that G_1 **contains** G_2 if there exists a subgraph H of G_1 such that H is isomorphic to G_2 .

Example. Show that the wheel W_6 contains a cycle of length 3, 4, 5, 6, and 7.

Induced Subgraphs

An **induced subgraph** H of a graph G is determined by a set of vertices $W \subseteq V(G)$. Define H to have as its vertex set, W, and as its edge set, the set of edges from E(G) between vertices in W.

Induced subgraphs of G are always subgraphs of G, but not vice versa.