Definition: f(x) is continuous at x_0 if $\lim_{x \to x_0} f(x)$ exists & $= f(x_0)$. f(x) is continuous if it is continuous at every point of its domain.

Definition: f(x) is **continuous at** x_0 if $\lim_{x \to x_0} f(x)$ exists $\& = f(x_0)$. f(x) is **continuous** if it is continuous at every point of its domain. **Example.** Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ (p.128) satisfying f(0) = 1 and f(2x) - f(x) = x for all $x \in \mathbb{R}$.

Definition: f(x) is **continuous at** x_0 if $\lim_{x \to x_0} f(x)$ exists $\& = f(x_0)$. f(x) is **continuous** if it is continuous at every point of its domain. **Example.** Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ (p.128) satisfying f(0) = 1 and f(2x) - f(x) = x for all $x \in \mathbb{R}$. **Solution.** Notice that $f(x) - f(\frac{x}{2}) = \frac{x}{2}$, $f(\frac{x}{2}) - f(\frac{x}{4}) = \frac{x}{4}$... $f(\frac{x}{2^{n-1}}) - f(\frac{x}{2^n}) = \frac{x}{2^n}$. After telescoping, we see $f(x) - f(\frac{x}{2^n}) = x(1 - \frac{1}{2^n})$.

Definition: f(x) is continuous at x_0 if $\lim_{x \to x_0} f(x)$ exists $\& = f(x_0)$. f(x) is **continuous** if it is continuous at every point of its domain. **Example.** Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ (p.128) satisfying f(0) = 1 and f(2x) - f(x) = x for all $x \in \mathbb{R}$. Solution. Notice that $f(x) - f(\frac{x}{2}) = \frac{x}{2}, \quad f(\frac{x}{2}) - f(\frac{x}{4}) = \frac{x}{4} \quad \dots \quad f(\frac{x}{2n-1}) - f(\frac{x}{2n}) = \frac{x}{2n}.$ After telescoping, we see $f(x) - f\left(\frac{x}{2^n}\right) = x\left(1 - \frac{1}{2^n}\right)$. Since $f(x) - f(0) = \lim_{n \to \infty} \left[f(x) - f\left(\frac{x}{2^n}\right) \right]$

Definition: f(x) is continuous at x_0 if $\lim_{x \to x_0} f(x)$ exists $\& = f(x_0)$. f(x) is **continuous** if it is continuous at every point of its domain. Example. Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ (p.128) satisfying f(0) = 1 and f(2x) - f(x) = x for all $x \in \mathbb{R}$. Solution. Notice that $f(x) - f(\frac{x}{2}) = \frac{x}{2}, \quad f(\frac{x}{2}) - f(\frac{x}{4}) = \frac{x}{4} \quad \dots \quad f(\frac{x}{2n-1}) - f(\frac{x}{2n}) = \frac{x}{2n}.$ After telescoping, we see $f(x) - f\left(\frac{x}{2^n}\right) = x\left(1 - \frac{1}{2^n}\right)$. Since $f(x) - f(0) = \lim_{x \to \infty} [f(x) - f(\frac{x}{2^n})] = x$, then f(x) = x + 1.

Definition: f(x) is differentiable at x_0 if $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists.

Definition: f(x) is differentiable at x_0 if $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists. Example. Let $a, b, c \in \mathbb{R}^+$. Prove that (p.134) $a^2 + b^2 + c^2 \le a^3 + b^3 + c^3$.

Definition: f(x) is differentiable at x_0 if $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists. Example. Let $a, b, c \in \mathbb{R}^+$. Prove that (p.134) $a^2 + b^2 + c^2 \le a^3 + b^3 + c^3$. Solution. We will show that $f(t) = a^t + b^t + c^t$ is increasing for $t \ge 0$.

Definition: f(x) is differentiable at x_0 if $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists. Example. Let $a, b, c \in \mathbb{R}^+$. Prove that (p.134) $a^2 + b^2 + c^2 \le a^3 + b^3 + c^3$. Solution. We will show that $f(t) = a^t + b^t + c^t$ is increasing for $t \ge 0$. Consider $f'(t) = (\ln a)a^t + (\ln b)b^t + (\ln c)c^t$. What is f'(0)?

Definition: f(x) is differentiable at x_0 if $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists. Example. Let $a, b, c \in \mathbb{R}^+$. Prove that (p.134) $a^2 + b^2 + c^2 \le a^3 + b^3 + c^3$. Solution. We will show that $f(t) = a^t + b^t + c^t$ is increasing for $t \ge 0$. Consider $f'(t) = (\ln a)a^t + (\ln b)b^t + (\ln c)c^t$. What is f'(0)? Next, consider $f''(t) = (\ln a)^2a^t + (\ln b)^2b^t + (\ln c)^2c^t$. f''(t) is positive for $t \ge 0$, so

Definition: f(x) is differentiable at x_0 if $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists. Example. Let $a, b, c \in \mathbb{R}^+$. Prove that (p.134) $a^{2} + b^{2} + c^{2} < a^{3} + b^{3} + c^{3}$. Solution. We will show that $f(t) = a^t + b^t + c^t$ is increasing for $t \ge 0$. Consider $f'(t) = (\ln a)a^t + (\ln b)b^t + (\ln c)c^t$. What is f'(0)? Next, consider $f''(t) = (\ln a)^2 a^t + (\ln b)^2 b^t + (\ln c)^2 c^t$. f''(t) is positive for $t \ge 0$, so We conclude that $f'(t) \ge 0$ for all $t \ge 0$, so f(t) is increasing.

Definition: f(x) is differentiable at x_0 if $\lim_{x \to \infty} \frac{f(x) - f(x_0)}{x - x_0}$ exists. Example. Let $a, b, c \in \mathbb{R}^+$. Prove that (p.134) $a^{2} + b^{2} + c^{2} < a^{3} + b^{3} + c^{3}$. *Solution.* We will show that $f(t) = a^t + b^t + c^t$ is increasing for $t \ge 0$. Consider $f'(t) = (\ln a)a^t + (\ln b)b^t + (\ln c)c^t$. What is f'(0)? Next, consider $f''(t) = (\ln a)^2 a^t + (\ln b)^2 b^t + (\ln c)^2 c^t$. f''(t) is positive for $t \ge 0$, so We conclude that f'(t) > 0 for all t > 0, so f(t) is increasing. **L'Hôpital's rule.** If f(x), g(x) differentiable, $g'(x) \neq 0$ on $I \setminus \{x_0\}$,

and $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ is of the form $\frac{0}{0}$ or $\frac{\pm \infty}{\pm \infty}$, and $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ exists, then $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$

Rolle's Theorem. Let f(x) be continuous on [a, b], diff'ble on (a, b), satisfy f(a) = f(b). Then there exists $c \in (a, b)$ such that f'(c) = 0.

Rolle's Theorem. Let f(x) be continuous on [a, b], diff'ble on (a, b), satisfy f(a) = f(b). Then there exists $c \in (a, b)$ such that f'(c) = 0.

Mean Value Theorem. Let f(x) be cts. on [a, b], diff ble on (a, b), Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Rolle's Theorem. Let f(x) be continuous on [a, b], diff'ble on (a, b), satisfy f(a) = f(b). Then there exists $c \in (a, b)$ such that f'(c) = 0.

Cauchy's Theorem. Let f, g be cts. on [a, b], diff'ble on (a, b), Then there is $c \in (a, b)$ s.t. (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).

Mean Value Theorem. Let f(x) be cts. on [a, b], diff'ble on (a, b), Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Rolle's Theorem. Let f(x) be continuous on [a, b], diff'ble on (a, b), satisfy f(a) = f(b). Then there exists $c \in (a, b)$ such that f'(c) = 0.

Cauchy's Theorem. Let f, g be cts. on [a, b], diff'ble on (a, b), Then there is $c \in (a, b)$ s.t. (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).

Mean Value Theorem. Let f(x) be cts. on [a, b], diff'ble on (a, b), Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Example. Let f''(x) exist and > 0. Prove $f(x + f'(x)) \ge f(x).(p.140)$

Rolle's Theorem. Let f(x) be continuous on [a, b], diff'ble on (a, b), satisfy f(a) = f(b). Then there exists $c \in (a, b)$ such that f'(c) = 0.

Cauchy's Theorem. Let f, g be cts. on [a, b], diff'ble on (a, b), Then there is $c \in (a, b)$ s.t. (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).

Mean Value Theorem. Let f(x) be cts. on [a, b], diff'ble on (a, b), Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Example. Let f''(x) exist and > 0. Prove $f(x + f'(x)) \ge f(x).(p.140)$ Solution. For a given x, either f'(x) = 0, > 0, < 0. Also, f'(x) incr.

Rolle's Theorem. Let f(x) be continuous on [a, b], diff'ble on (a, b), satisfy f(a) = f(b). Then there exists $c \in (a, b)$ such that f'(c) = 0.

Cauchy's Theorem. Let f, g be cts. on [a, b], diff'ble on (a, b), Then there is $c \in (a, b)$ s.t. (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).

Mean Value Theorem. Let f(x) be cts. on [a, b], diff'ble on (a, b), Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Example. Let f''(x) exist and > 0. Prove $f(x + f'(x)) \ge f(x).(p.140)$ Solution. For a given x, either f'(x) = 0, > 0, < 0. Also, f'(x) incr. Case f'(x) = 0: Then f(x + 0) = f(x)

Rolle's Theorem. Let f(x) be continuous on [a, b], diff'ble on (a, b), satisfy f(a) = f(b). Then there exists $c \in (a, b)$ such that f'(c) = 0.

Cauchy's Theorem. Let f, g be cts. on [a, b], diff'ble on (a, b), Then there is $c \in (a, b)$ s.t. (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).

Mean Value Theorem. Let f(x) be cts. on [a, b], diff'ble on (a, b), Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Example. Let f''(x) exist and > 0. Prove $f(x + f'(x)) \ge f(x).(p.140)$ Solution. For a given x, either f'(x) = 0, > 0, < 0. Also, f'(x) incr. Case f'(x) = 0: Then $f(x + 0) = f(x) \checkmark$

Rolle's Theorem. Let f(x) be continuous on [a, b], diff'ble on (a, b), satisfy f(a) = f(b). Then there exists $c \in (a, b)$ such that f'(c) = 0.

Cauchy's Theorem. Let f, g be cts. on [a, b], diff'ble on (a, b), Then there is $c \in (a, b)$ s.t. (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).

Mean Value Theorem. Let f(x) be cts. on [a, b], diff'ble on (a, b), Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Example. Let f''(x) exist and > 0. Prove $f(x + f'(x)) \ge f(x).(p.140)$ Solution. For a given x, either f'(x) = 0, > 0, < 0. Also, f'(x) incr. Case f'(x) = 0: Then $f(x + 0) = f(x) \checkmark$

Case f'(x) < 0: Apply the MVT to [x + f'(x), x]:

Rolle's Theorem. Let f(x) be continuous on [a, b], diff'ble on (a, b), satisfy f(a) = f(b). Then there exists $c \in (a, b)$ such that f'(c) = 0.

Cauchy's Theorem. Let f, g be cts. on [a, b], diff'ble on (a, b), Then there is $c \in (a, b)$ s.t. (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).

Mean Value Theorem. Let f(x) be cts. on [a, b], diff'ble on (a, b), Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Example. Let f''(x) exist and > 0. Prove $f(x + f'(x)) \ge f(x).(p.140)$ Solution. For a given x, either f'(x) = 0, > 0, < 0. Also, f'(x) incr. Case f'(x) = 0: Then $f(x + 0) = f(x) \checkmark$

Case f'(x) < 0: Apply the MVT to [x + f'(x), x]: there exists $c \in (x + f'(x), x)$ s.t. $f'(c) = \frac{f(x) - f(x + f'(x))}{(x - [x + f'(x)])}$.

Rolle's Theorem. Let f(x) be continuous on [a, b], diff'ble on (a, b), satisfy f(a) = f(b). Then there exists $c \in (a, b)$ such that f'(c) = 0.

Cauchy's Theorem. Let f, g be cts. on [a, b], diff'ble on (a, b), Then there is $c \in (a, b)$ s.t. (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).

Mean Value Theorem. Let f(x) be cts. on [a, b], diff'ble on (a, b), Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Example. Let f''(x) exist and > 0. Prove $f(x + f'(x)) \ge f(x).(p.140)$ Solution. For a given x, either f'(x) = 0, > 0, < 0. Also, f'(x) incr. Case f'(x) = 0: Then $f(x + 0) = f(x) \checkmark$

Case f'(x) < 0: Apply the MVT to [x + f'(x), x]: there exists $c \in (x + f'(x), x)$ s.t. $f'(c) = \frac{f(x) - f(x + f'(x))}{(x - [x + f'(x)])}$. We know (-f'(x)) > 0. Since c < x, then f'(c) < f'(x) < 0.

Rolle's Theorem. Let f(x) be continuous on [a, b], diff'ble on (a, b), satisfy f(a) = f(b). Then there exists $c \in (a, b)$ such that f'(c) = 0.

Cauchy's Theorem. Let f, g be cts. on [a, b], diff'ble on (a, b), Then there is $c \in (a, b)$ s.t. (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).

Mean Value Theorem. Let f(x) be cts. on [a, b], diff'ble on (a, b), Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Example. Let f''(x) exist and > 0. Prove $f(x + f'(x)) \ge f(x).(p.140)$ Solution. For a given x, either f'(x) = 0, > 0, < 0. Also, f'(x) incr. Case f'(x) = 0: Then $f(x + 0) = f(x) \checkmark$

Case f'(x) < 0: Apply the MVT to [x + f'(x), x]: there exists $c \in (x + f'(x), x)$ s.t. $f'(c) = \frac{f(x) - f(x + f'(x))}{(x - [x + f'(x)])}$. We know (-f'(x)) > 0. Since c < x, then f'(c) < f'(x) < 0.