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Continuity

Definition: f (x) is continuous at x0 if lim
x→x0

f (x) exists & = f (x0).

f (x) is continuous if it is continuous at every point of its domain.
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Definition: f (x) is continuous at x0 if lim
x→x0

f (x) exists & = f (x0).

f (x) is continuous if it is continuous at every point of its domain.

Example. Find all continuous functions f : R → R (p.128)
satisfying f (0) = 1 and f (2x) − f (x) = x for all x ∈ R.
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Definition: f (x) is continuous at x0 if lim
x→x0

f (x) exists & = f (x0).

f (x) is continuous if it is continuous at every point of its domain.

Example. Find all continuous functions f : R → R (p.128)
satisfying f (0) = 1 and f (2x) − f (x) = x for all x ∈ R.

Solution. Notice that
f (x)−f

(
x
2

)
= x

2 , f
(

x
2

)−f
(

x
4

)
= x

4 . . . f
(

x
2n−1

)−f
(

x
2n

)
= x

2n .

After telescoping, we see f (x)−f
(

x
2n
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= x
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1 − 1

2n

)
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n→∞
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f (x)−f

(
x
2n

)]



Continuity and Differentiability — §3.2.2, 3.2.4, 3.2.5 25

Continuity

Definition: f (x) is continuous at x0 if lim
x→x0

f (x) exists & = f (x0).

f (x) is continuous if it is continuous at every point of its domain.

Example. Find all continuous functions f : R → R (p.128)
satisfying f (0) = 1 and f (2x) − f (x) = x for all x ∈ R.

Solution. Notice that
f (x)−f

(
x
2

)
= x

2 , f
(

x
2

)−f
(

x
4

)
= x

4 . . . f
(

x
2n−1

)−f
(

x
2n

)
= x

2n .

After telescoping, we see f (x)−f
(

x
2n

)
= x

(
1 − 1

2n

)
.

Since f (x) − f (0) = lim
n→∞

[
f (x)−f
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Differentiability

Definition: f (x) is differentiable at x0 if lim
x→x0

f (x)−f (x0)
x−x0

exists.
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Differentiability

Definition: f (x) is differentiable at x0 if lim
x→x0

f (x)−f (x0)
x−x0

exists.

Example. Let a, b, c ∈ R
+. Prove that (p.134)

a2 + b2 + c2 ≤ a3 + b3 + c3.
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Differentiability

Definition: f (x) is differentiable at x0 if lim
x→x0

f (x)−f (x0)
x−x0

exists.

Example. Let a, b, c ∈ R
+. Prove that (p.134)

a2 + b2 + c2 ≤ a3 + b3 + c3.

Solution. We will show that f (t) = at + bt + ct is increasing for t ≥ 0.
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Differentiability

Definition: f (x) is differentiable at x0 if lim
x→x0

f (x)−f (x0)
x−x0

exists.

Example. Let a, b, c ∈ R
+. Prove that (p.134)

a2 + b2 + c2 ≤ a3 + b3 + c3.

Solution. We will show that f (t) = at + bt + ct is increasing for t ≥ 0.

Consider f ′(t) = (ln a)at + (ln b)bt + (ln c)ct . What is f ′(0)?
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Differentiability

Definition: f (x) is differentiable at x0 if lim
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Solution. We will show that f (t) = at + bt + ct is increasing for t ≥ 0.

Consider f ′(t) = (ln a)at + (ln b)bt + (ln c)ct . What is f ′(0)?

Next, consider f ′′(t) = (ln a)2at + (ln b)2bt + (ln c)2ct .

f ′′(t) is positive for t ≥ 0, so .
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Next, consider f ′′(t) = (ln a)2at + (ln b)2bt + (ln c)2ct .

f ′′(t) is positive for t ≥ 0, so .

We conclude that f ′(t) ≥ 0 for all t ≥ 0, so f (t) is increasing.
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Differentiability

Definition: f (x) is differentiable at x0 if lim
x→x0

f (x)−f (x0)
x−x0

exists.

Example. Let a, b, c ∈ R
+. Prove that (p.134)

a2 + b2 + c2 ≤ a3 + b3 + c3.

Solution. We will show that f (t) = at + bt + ct is increasing for t ≥ 0.

Consider f ′(t) = (ln a)at + (ln b)bt + (ln c)ct . What is f ′(0)?

Next, consider f ′′(t) = (ln a)2at + (ln b)2bt + (ln c)2ct .

f ′′(t) is positive for t ≥ 0, so .

We conclude that f ′(t) ≥ 0 for all t ≥ 0, so f (t) is increasing.

L’Hôpital’s rule. If f (x), g(x) differentiable, g ′(x) �= 0 on I \ {x0},
and lim

x→x0

f (x)
g(x) is of the form 0

0 or ±∞
±∞ , and lim

x→x0

f ′(x)
g ′(x) exists, then

lim
x→x0

f (x)

g(x)
= lim

x→x0

f ′(x)

g ′(x)
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Mean Value Theorem and Related Theorems

Rolle’s Theorem. Let f (x) be continuous on [a, b], diff’ble on (a, b),
satisfy f (a) = f (b). Then there exists c ∈ (a, b) such that f ′(c) = 0.
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Mean Value Theorem and Related Theorems

Rolle’s Theorem. Let f (x) be continuous on [a, b], diff’ble on (a, b),
satisfy f (a) = f (b). Then there exists c ∈ (a, b) such that f ′(c) = 0.

Mean Value Theorem. Let f (x) be cts. on [a, b], diff’ble on (a, b),

Then there exists c ∈ (a, b) such that f ′(c) = f (b)−f (a)
b−a .
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Rolle’s Theorem. Let f (x) be continuous on [a, b], diff’ble on (a, b),
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Rolle’s Theorem. Let f (x) be continuous on [a, b], diff’ble on (a, b),
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Mean Value Theorem. Let f (x) be cts. on [a, b], diff’ble on (a, b),

Then there exists c ∈ (a, b) such that f ′(c) = f (b)−f (a)
b−a .

Example. Let f ′′(x) exist and > 0. Prove f
(
x + f ′(x)

) ≥ f (x).(p.140)
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Example. Let f ′′(x) exist and > 0. Prove f
(
x + f ′(x)

) ≥ f (x).(p.140)

Solution. For a given x , either f ′(x) = 0, > 0, < 0. Also, f ′(x) incr.
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Rolle’s Theorem. Let f (x) be continuous on [a, b], diff’ble on (a, b),
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(
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) ≥ f (x).(p.140)

Solution. For a given x , either f ′(x) = 0, > 0, < 0. Also, f ′(x) incr.

Case f ′(x) = 0: Then f (x + 0) = f (x)
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Mean Value Theorem and Related Theorems

Rolle’s Theorem. Let f (x) be continuous on [a, b], diff’ble on (a, b),
satisfy f (a) = f (b). Then there exists c ∈ (a, b) such that f ′(c) = 0.
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(
x + f ′(x)

) ≥ f (x).(p.140)

Solution. For a given x , either f ′(x) = 0, > 0, < 0. Also, f ′(x) incr.

Case f ′(x) = 0: Then f (x + 0) = f (x) �
Case f ′(x) < 0: Apply the MVT to [x + f ′(x), x ]:
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Rolle’s Theorem. Let f (x) be continuous on [a, b], diff’ble on (a, b),
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Mean Value Theorem and Related Theorems

Rolle’s Theorem. Let f (x) be continuous on [a, b], diff’ble on (a, b),
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