Number Theory

Number Theory is concerned with the properties of integers.

Important concepts:

- \blacktriangleright lcm(m, n) is the **least common multiple**.
- ▶ gcd(m, n) is the greatest common divisor. We say that *m* and *n* are relatively prime (or coprime) if gcd(m, n) = 1.
- ▶ $n \equiv o \mod m$ implies n o is a multiple of m. (m|n o)
- Modular Arithmetic. If you only care about the value of an expression modulo n, then you can do your calculations modulo n.

Example.What is the last digit of 2^{20} ?Solution.The answer is $2^{20} \mod 10$. To solve, find a pattern: $2^0 \equiv 1, 2^1 \equiv \mathbf{2}, 2^2 \equiv 4, 2^3 \equiv 8, 2^4 \equiv 6, 2^5 \equiv \mathbf{2}$. (Cycle period 4)

Number Theory

Important theorems:

- ► The Fundamental Theorem of Arithmetic. Every positive integer can be written as the product of primes in exactly one way. Often "Unique factorization": Write $n = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$.
- Bézout's identity For integers a and b, there exist integers x and y satisfying ax + by = gcd(a, b)

Example. Find an integral solution to the equation 10x + 6y = 14. Solution. We know that a solution exists to 10x + 6y = 2; find it and then multiply x and y by 7. (Try x = 2, y = -3)

► You may want to read up on the Chinese remainder theorem.

Number Theory

Important theorems:

Fermat's little theorem For p prime, n integer. Then n^p ≡ n mod p. (When n and p are relatively prime, n^{p-1} ≡ 1 mod p)
Example. Show that for every prime p there is an integer n such that 2ⁿ + 3ⁿ + 6ⁿ - 1 is divisible by p.
Solution. Try it out for small p. 2¹ + 3¹ + 6¹ - 1 We know 2^{p-1}, 3^{p-1}, 6^{p-1} ≡ 1 mod p. Consider 3 ⋅ 2^{p-1} + 2 ⋅ 3^{p-1} + 6^{p-1} ≡ 3 + 2 + 1 mod p. Therefore, 6 ⋅ 2^{p-2} + 6 ⋅ 3^{p-2} + 6 ⋅ 6^{p-2} ≡ 6 mod p. We conclude 2^{p-2} + 3^{p-2} + 6^{p-2} - 1 ≡ 0 mod p

▶ Wilson's theorem For *p* prime, p|((p-1)!+1).