Number Theory

Number Theory is concerned with the properties of integers.

Important concepts:

- $\operatorname{Icm}(m, n)$ is the least common multiple.
- $\operatorname{gcd}(m, n)$ is the greatest common divisor. We say that m and n are relatively prime (or coprime) if $\operatorname{gcd}(m, n)=1$.
- $n \equiv 0 \bmod m$ implies $n-o$ is a multiple of $m .(m \mid n-o)$
- Modular Arithmetic. If you only care about the value of an expression modulo n, then you can do your calculations modulo n.
Example. What is the last digit of 2^{20} ?
Solution. The answer is $2^{20} \bmod 10$. To solve, find a pattern:

$$
2^{0} \equiv 1,2^{1} \equiv 2,2^{2} \equiv 4,2^{3} \equiv 8,2^{4} \equiv 6,2^{5} \equiv 2 .(\text { Cycle period } 4)
$$

Number Theory

Important theorems:

- The Fundamental Theorem of Arithmetic. Every positive integer can be written as the product of primes in exactly one way. Often "Unique factorization": Write $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{m}^{k_{m}}$.
- Bézout's identity For integers a and b, there exist integers x and y satisfying $a x+$ by $=\operatorname{gcd}(a, b)$
Example. Find an integral solution to the equation $10 x+6 y=14$.
Solution. We know that a solution exists to $10 x+6 y=2$; find it and then multiply x and y by 7 . (Try $x=2, y=-3$)
- You may want to read up on the Chinese remainder theorem.

Number Theory

Important theorems:

- Fermat's little theorem For p prime, n integer. Then $n^{p} \equiv n$ $\bmod p$. (When n and p are relatively prime, $n^{p-1} \equiv 1 \bmod p$)
Example. Show that for every prime p there is an integer n such that $2^{n}+3^{n}+6^{n}-1$ is divisible by p.
Solution. Try it out for small p. $2^{1}+3^{1}+6^{1}-1$ We know $2^{p-1}, 3^{p-1}, 6^{p-1} \equiv 1 \bmod p$. Consider $3 \cdot 2^{p-1}+2 \cdot 3^{p-1}+6^{p-1} \equiv 3+2+1 \bmod p$. Therefore, $6 \cdot 2^{p-2}+6 \cdot 3^{p-2}+6 \cdot 6^{p-2} \equiv 6 \bmod p$. We conclude $2^{p-2}+3^{p-2}+6^{p-2}-1 \equiv 0 \bmod p$
- Wilson's theorem For p prime, $p \mid((p-1)!+1)$.

